

Using External Data Integration Services for
Oracle ERP Cloud, Release 13
O R A C L E W H I T E P A P E R | A U G U S T 2 0 1 7

USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Table of Contents

Overview 7

Inbound Data Management 7

Outbound Data Management 7

Inbound Data Overview 7

Outbound Data Overview 10

What’s New 12

Automated End-to-End Inbound (Bulk Import) Orchestrated Flow 13

Prerequisites 13

Flow Steps 13

Generating the Inbound Data File 14

Downloading a Template 14

Preparing Data Using the Spreadsheet Template 14

Overview of Template Structure 15

Template Requirements 15

Automated End-to-End Outbound (Bulk Export) Orchestrated Flow 16

Example 16

Prerequisites 16

Flow Steps 16

Flow Automation using the Oracle ERP Integration Web Service 17

Constructing the Oracle ERP Integration Service End Point URL 17

Critical Web Service Operations to Automate Integration Flows 17

Operation: importBulkData 17

Sample Response from the importBulkData Operation 21

Operation: exportBulkData 21

Operation: getDocumentForDocumentId 22

Security Policy of the Oracle ERP Integration Service 23

Callback Web Service 24

USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Callback Response in JSON Format 25

Correcting Load Process Errors 26

Correcting Interface Data Errors 26

Correcting Import Process Errors 26

Purging Interface and Error Tables 27

Operation: extractAndPurge 27

Advanced Features 29

Securing the Inbound or Outbound Data File 29

Oracle ERP Cloud PGP Key 29

Customer PGP Key 29

Enabling Encryption in the Import Process 29

Enabling Encryption in the Export Process 30

Job Property File for the Bulk Import Process 30

Option 1: Job Property File as Part of the Data ZIP File 31

Option 2: Upload the Job Properties File to UCM for Reuse 32

Specifying Multiple Threads in Bulk Import 32

Optimized Management of Large Data Files 33

Appendix 1: Security Prerequisites to Download the Job Output File 34

Appendix 2: Sample Code for Preparing a Data File for Inbound and Outbound Flow 37

Appendix 3: Predefined Target UCM Accounts 39

Appendix 4: ESS Job Execution Status 40

Appendix 5: Testing Web Service using a Client Proxy 41

Steps to Import a New Certificate in the Keystore 41

Create a Proxy Client and Add the OWSM Policy 43

Test Upload File to UCM using Web Service 44

Export the Certificate 44

Appendix 6: Automate Web Service Invocation Using JDeveloper 11 49

USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Appendix 7: Error Handling for Import Jobs 50

Error Handling Processes 50

Appendix 8: Using XML Templates to Generate Data Files 51

Installing and Setting Up Oracle Data Integrator 51

Creating Source and Target Models 51

Configuring Integration Projects 51

Opening the XML Template 52

Using XML Integration Templates to Generate Data Files 52

Family-Level XML Files 52

Product-Level XML Files 53

Product XML Files 53

Creating Integration Projects That Generate Data Files for Import 54

Knowledge Modules 54

Integration Interfaces 54

Appendix 9: Manage Inbound Flow Automation Steps with Separate Web Service Operations 55

Operation: getEssJobStatus 58

Response Payload 60

Appendix 10: Manage Outbound Flow Automation Steps with Separate Web Service Operations 62

Flow Steps Details 62

Operation: getEssJobStatus 63

Appendix 11: Creating a Callback Web Service 65

Callback Web Service Security 70

PaaS or On-Premise Security Configuration 70

Appendix 12: Creating a Job Property File for the importBulkData Operation 73

Generating Job Properties 73

Delivering Job Property File 73

Reusing the Job Property File Naming Convention from the UCM Account 73

Reusing the Job Property File – Custom Name from the UCM Account 73

USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Appendix 13: Manual Inbound (Import) Steps 74

Transferring Data Files to Oracle WebCenter Content Server 74

File Import and Export 74

References for Using Content Management 74

Managing Files for Import and Export 74

Using the File Import and Export Page 75

Interacting with Content Management 75

Security 75

Searching Records 76

Accessing Content in a New Account 76

Account Names 76

Deleting Files 77

Uploading for Import 77

Downloading for Export 77

Load Interface File for Import Process 77

Importing Data 78

Loading Data into Interface Tables 78

Correcting Interface Data Errors 79

Correcting Import Process Errors 80

Purging Interface and Error Tables 81

Operation: extractAndPurge 81

Finding and Submitting the Import Process 82

Correcting Interface Data Errors 83

Correcting Import Process Errors 83

Purging Interface and Error Tables 85

Operation: extractAndPurge 85

Appendix 14: Managing PGP Encryption Keys 87

Managing PGP Certificates 87

USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Generating Certificates 87

Importing and Exporting PGP Certificates 88

Deleting Certificates 89

Appendix 15: How to Encrypt and Decrypt a Data File 90

Encrypt an Inbound Data File from your Linux On-Premise System 90

Decrypt an Outbound Oracle ERP Cloud Data File in your Linux On-Premise System 90

Appendix 16: Large File Optimization (MTOM) Proxy Client Code Changes 91

Appendix 17: Purge - UI Based Approach 95

Purge FBDI Object Data using a Single Load Request ID 96

Purge FBDI Object Data using a Range of Load Request IDs 96

Purging Non-FBDI Data 97

7 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Overview

Business organizations typically have a recurring need for the streamlined management of inbound and outbound data in

areas such as initial data conversion, master data creation and maintenance, regular transaction processing, and fiduciary

compliance. Oracle ERP Cloud offers a comprehensive collection of tools and feature sets to meet these requirements.

Oracle ERP integration scenarios generally involve system-to-system integration flows between distinct on-premise

systems, third-party or legacy systems, and Cloud systems.

Inbound Data Management

Oracle ERP Cloud Bulk Data Import Services accommodate:

 High-volume data import scenarios

 Support of legacy data migration, as well as recurring bulk data import

 Automation of end-to-end import flows with web service architecture

 Tracking of import processes for completion, errors, and resubmission

 Notifications in the form of e-mail and callback to automate data validation and error resolution

 Predefined import templates for business objects

Outbound Data Management

Oracle ERP Cloud Bulk Data Export Services deliver:

 Standard prebuilt reports across applications that can be run on demand

 BI Publisher report capabilities that empower users with custom reporting tools

 Efficient data extract formats such as XML, CSV, and TXT

 Automation of end-to-end export flows with web service architecture

 Tracking of export processes for completion, error tracking, and resubmission

 Features which empower businesses with notification such as e-mail and callback to initiate downstream business
tasks or operations

Inbound Data Overview

There are several scenarios where data from on-premise or external business systems needs to be imported into Oracle

ERP Cloud to consummate business transactions such as:

 Recurring billing transactions originating from on-premise or PaaS-based applications which will be imported into

Oracle ERP Cloud.

 Claims generated from on-premise insurance claim processing applications, which require the creation of Payables

invoices for remitting payments.

8 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

 Journal entries from legacy applications which will be imported into Oracle ERP Cloud.

External data integration services for accommodating inbound data in Oracle ERP Cloud include the following components:

 Templates to structure, format, and generate the data file according to the requirements of the target application

objects.

 File-based load process to load the data file(s) into the respective product application interface tables.

 Application-specific data import processes to transfer data from product application interface tables to the relevant

product application tables.

The following flow diagram outlines the steps involved in the process:

9 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Download the File Import

template

Prepare data file using

template

Upload file to Universal

Content Management

Load data to interface table

Import data to application

table using import job

Correct data in data file

Load process purges

interface table

No

Correct data in interface table

using ADFdi spreadsheet

Errors?

Errors?

Yes

Data successfully uploaded

to product tables

Yes

No

Data Purged?

No

Download Purge Backup

file, Select/Correct

erroneous data in the

interface file(s)

and restart FBDI Process

Yes

Figure 1: External data integration conceptual process flow

10 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

To automatically import data into Oracle ERP Cloud:

1. Create the data file using the applicable inbound business object template.

2. Invoke the Oracle ERP Integration Service to initiate import.

3. Provide notification through asynchronous callback upon completion.

4. Deliver the import status and information using callback to access logs or errors.

5. Review any errors, if applicable, and take appropriate action for error resolution.

The following diagram outlines the steps involved in the automated data import process:

Figure 2: Inbound data integration orchestration flow

Note: After completion, Oracle ERP Cloud extracts data from the interface and error tables, includes the ESS job

log files, and uploads the files to the UCM server in a ZIP format. Once uploaded successfully to the respective

UCM account, data from the interface and error tables will be purged.

Outbound Data Overview

 Global statutory or fiduciary requirements drive diverse reporting and data extract needs. In these types of

business scenarios, the flow of data from Oracle ERP Cloud is utilized for either (1) end-state reporting to internal

11 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

business stakeholders, financial institutions, government agencies, tax authorities, or third parties or (2) as an

intermediate means to perform additional downstream tasks. The seamless launch of a payables register, trial

balance, and reconciliation reports represent some of the examples in practice.

 Automated payment data extract from Oracle ERP Cloud to update downstream external applications.

 Existing master data extracts, such as customers, suppliers, and so on, to synchronize with external applications.

Exporting data from Oracle ERP Cloud typically consists of the following steps:

1. Create a BI Publisher report(s) using the respective Enterprise Scheduler (ESS) job or BI Publisher Dashboard.

2. Invoke the Oracle ERP Integration Service to initiate the respective export job.

3. Provide notification through asynchronous callback upon completion.

4. Deliver the status and information using callback to access extracted data file(s) from the Oracle ERP Cloud.

5. Review any errors if applicable and take appropriate action, such as process the data extracted for further

downstream business operation needs.

The following diagram outlines the steps involved in the automated data export process:

Figure 3: Outbound data integration orchestration flow

12 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

What’s New

With Oracle ERP Cloud, Release 12, several new features have been added to further simplify and enhance the Oracle ERP

Integration Service capabilities:

1. New operations importBulkData and exportBulkData that further simplify bulk data management.

2. Encryption option to secure data files for import and export processes.

3. Capability of efficiently handling large files.

4. Purging of product application interface tables where needed.

5. Multi-threading bulk import process.

13 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Automated End-to-End Inbound (Bulk Import) Orchestrated Flow

To illustrate the inbound data integration with Oracle ERP Cloud, the Journals Import flow will be used as an example.

Prerequisites

 Import a certificate into your local keystore. For more information, see Appendix 5: Testing Web Service using a

Client Proxy.

 Configure the sample web service tester. For more information, see Appendix 5: Testing Web Service using a

Client Proxy.

 Identify the user name and password to call the Import Journals process.

 Verify that the user has access to the AttachmentsRead role in the UCM server. For more information, see

Appendix 1: Security Prerequisites to Download the Job Output File.

 Verify the end point URL for the web service. For more information, see the automation web service at

https://<hostname>.<domainname>/publicFinancialCommonErpIntegration/ErpIntegrationSe

rvice?WSDL.

Flow Steps

1. Generate the data file for the object you want to import. For more information, see Generating the Inbound Data

File.

2. Prepare the request payload for the ImportBulkData operation of the Oracle ERP Integration Service. This web

service operation performs the following tasks:

a. Uploads the data file to the UCM server.

b. Loads data from the file on the UCM server to the respective product interface table(s).

c. Imports the data from the product interface table(s) to the respective Oracle ERP product main table(s).

d. Extracts errors and logs into a ZIP file and uploads them to the respective UCM account.

e. Purges the interface and errors tables related to the respective import job.

f. Notifies users upon completion of all ESS jobs using bell, e-mail, or callback URL as defined in the

payload.

3. Receive a bell, e-mail, or callback notification for the request identifier returned by the web service operation in

step 2.

4. Prepare the payload for the getDocumentForDocumentId operation to download the output file.

14 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Generating the Inbound Data File

The File-Based Data Import guides in the Oracle Help Center (http://docs.oracle.com) include integration templates to help

you prepare external data for loading and importing. Each template includes table-specific instructions, guidelines, formatted

spreadsheets, and best practices for preparing the data file for upload. Use the templates to ensure that your data conforms

to the structure and format of the target application tables.

When preparing external data using the templates for the purposes of import, the following tasks are required:

 Download the applicable import template

 Prepare data using the correct spreadsheet import template

Downloading a Template

To download a template:

1. Open the File-Based Data Import guide for your cloud service. Locate the import process of interest.

2. View the list of files:

 Control files describe the logical flow of the data load process.

 Spreadsheet templates include the worksheets and macros for structuring, formatting, and generating your

data file.

Note

You can use XML templates to import data into Oracle Data Integrator. For more information on using XML

templates, see Appendix 8: Using XML Templates to Generate Data Files.

3. Click the applicable template URL in the File Links table to download the file. For example, click

JournalImportTemplate.xlsm in the Journal Import topic.

Preparing Data Using the Spreadsheet Template

To prepare your data in a spreadsheet format:

1. Open the spreadsheet template. The first worksheet in each file provides instructions for using the template.

Important

If you don’t follow the instructions, you’ll get data load errors and data import failures. If the file is machine

generated, you must use UTF-8 encoding to avoid load errors.

2. Enter the required data and then save the file.

3. Click the Generate CSV File button.

15 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

The macro generates a comma-separated values (CSV) file and also compresses the file into a ZIP file. You must transfer

the ZIP file to the Oracle Content Management Server (UCM).

Overview of Template Structure

The integration templates include the following characteristics:

 Each interface table is represented by a separate worksheet.

 Each interface table field is represented by a worksheet column with a header in the first row.

 Each column header contains bubble help text or help comments that include details about the column, such as

the expected data type, length, and in some cases, other relevant instruction text.

 Columns are formatted, where applicable, to match the target field data type to eliminate data entry errors.

 The worksheet columns are in the order that the control file processes the data file.

For more information on the template structure, see the main Instructions worksheet in the template.

Template Requirements

To minimize the risks of an unsuccessful data load, ensure the following:

 Unused columns can be hidden, but they cannot be reordered or deleted.

Important

Deleting or reordering columns causes the load process to fail and results in an unsuccessful data load.

 External data must conform to the data types accepted by the control file and process for the associated database

column.

 Date column values must appear in the YYYY/MM/DD format.

 Amount column values can’t have separators other than a period (.) as the decimal separator.

 Negative values must be preceded by the minus (-) sign.

 Column values that require whole numbers include data validation to allow whole numbers only.

 For columns that require internal ID values, refer to the bubble help text for additional guidance about finding these

values.

After you finish preparing the data in the applicable spreadsheet template worksheet(s), click the Generate CSV File button

on the main Instructions worksheet to generate a ZIP file containing one or more CSV data files.

For more information on using XML templates to generate data files, see Appendix 8: Using XML Templates to Generate

Data Files.

16 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Automated End-to-End Outbound (Bulk Export) Orchestrated Flow

To illustrate the outbound data integration with Oracle ERP Cloud, the Extract Receivables Transactions flow will be used as

an example.

Example

A batch of transactions is extracted from the application and sent to the customers. The transactions are extracted from the

output file of the Print Receivables Transaction ESS process.

Prerequisites

 Import a certificate into your local keystore. For more information, see Appendix 5: Testing Web Service using a

Client Proxy.

 Configure the sample web service tester. For more information, see Appendix 5: Testing Web Service using a

Client Proxy.

 Identify the user name and password to call the Print Receivables Transaction process.

 Verify that the user has access to the AttachmentsRead role in the UCM server. For more information, see

Appendix 1: Security Prerequisites to Download the Job Output File.

 Verify the end point URL for the web service. For more information, see the automation web service at:

https://<hostname>.<domainname>/publicFinancialCommonErpIntegration/ErpIntegrationSe

rvice?WSDL.

Flow Steps

1. Prepare the payload for the exportBulkData operation to request the data extract from Oracle ERP Cloud.

2. Receive a bell, e-mail, or callback notification for the request identifier returned by the web service operation in
step 1.

3. Prepare the payload for the getDocumentForDocumentId operation to download the output file.

17 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Flow Automation using the Oracle ERP Integration Web Service

A web service for Oracle Fusion Financials is an artifact that provides a standardized way of integrating other web-based

applications or business system processes with Oracle ERP Cloud. Web services allow organizations to communicate with

Oracle ERP Cloud without any application expertise. The Oracle ERP Integration Service is an external web service that

provides robust web service operations, such as supporting the bulk import of data into the Oracle ERP Cloud, the bulk

export of data from the Oracle ERP Cloud, and key value-added operations to retrieve files and purge interface and error

data periodically.

Internal Web Service Name: oracle.apps.financials.commonModules.shared.erpIntegrationService.ErpIntegrationService

To access automation details using the Oracle ERP Integration Service, refer to the SOAP Web Services guide for your

cloud services in the Oracle Help Center (http://docs.oracle.com).

Constructing the Oracle ERP Integration Service End Point URL

To obtain the physical end point of any specific instance:

1. Launch the ATK home page and sign in as a functional user.

2. Navigate to a dashboard or work area associated with the Payables Service.

3. In the Payables Invoice workbench, you can see a URL in the browser similar to

https://<hostname>.<domainname>/payables/faces/InvoiceWorkbench.

The “<hostname>.<domainname>” may be “https://<pod-name>.<lba>.xxx.oraclecloud.com”.

In this example “<pod-name>.<lba>” is the hostname and “xxx.oraclecloud.com” is the domain name.

a. In this URL, capture “https://<hostname>.<domainname>".

b. Append the static context root:

"/publicFinancialCommonErpIntegration/ErpIntegrationService".
“https://<hostname>.<domainname>/publicFinancialCommonErpIntegration/ErpInteg

rationService” is the WSDL URL for the Oracle ERP Integration Service.

Critical Web Service Operations to Automate Integration Flows

The Oracle ERP Integration Service includes the following operations:

 importBulkData (Inbound): Imports data into Oracle ERP Cloud.

 exportBulkData (Outbound): Exports data from Oracle ERP Cloud.

 getDocumentForDocumentId: Retrieves data output file(s) from Oracle ERP Cloud.

Operation: importBulkData

The importBulkData operation uploads a file to the Oracle Universal Content Management (UCM) server based on the

document details specified and submits an ESS job to load and import the uploaded files to an application table.

18 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

The following table lists the parameters for this operation:

Parameter
Name

Description Parameter
(In/Out)

Mandatory Type

Document List of elements, each containing the details of the file to be uploaded.
The details include the file content, file name, content type, file title,
author, security group, and account.

Mandatory Document Attributes:

• Content: File content uploaded on to the UCM server. The
value of the content tag is obtained by converting the file content
into Base64 encoding. For a sample program for Base64
encoding, see Appendix 2: Sample Code for Preparing a Data
File for Inbound and Outbound Flow.

• FileName: Name of the file on the UCM server.

Optional Document Attributes:

• ContentType: Type of content uploaded such as zip, txt, or csv.

• DocumentTitle: Title of the file on the UCM server.

• DocumentAuthor: Author of the document.

• DocumentSecurityGroup: A fixed value used to import or
export documents on the UCM server. The security group for all
the import processes is FAFusionImportExport.

• DocumentAccount: Account under which the file is uploaded.
For more information on the UCM account associated with the
ESS process, see Appendix 3: Predefined Target UCM
Accounts.

IN Yes java.lang.String

Job Details The details of the ESS job used to import and process the uploaded
file. The details include the primary job information (job definition
name, job package name), ParameterList, and JobRequestId. To get
the job package and definition name, see Viewing Details about
Predefined Scheduled Processes: Procedure in the File-Based Data
Import for Oracle Financials Cloud guide in the Oracle Help Center at
http://docs.oracle.com.

IN No, if the
job property
file is
provided

java.lang.String

Notification
Code

A two-digit number that determines how and when a notification is
passed for the status of the import job. See the table below for the
notification code values.

IN Yes java.lang.String

Callback URL The callback URL of the web service you implemented to receive the
ESS job status upon job completion.

IN No java.lang.String

Job Options Optional parameters, comma separated.

To enable data file encryption, you must provide the following options:

FileEncryption=PGPUNSIGNED or PGPSIGNED

FA_ALIAS=<ERP Cloud Key Alias Name>

CUSTOMER_ALIAS=<Customer Key Alias Name>

Example:

IN No java.lang.String

http://docs.oracle.com/cloud/latest/financialscs_gs/OEFBF/Viewing_Details_About_Predefined_Scheduled_Processes_Procedure.htm#ViewingDetailsAboutPredefinedSchedu-EFCAE12E
http://docs.oracle.com/cloud/latest/financialscs_gs/OEFBF/Viewing_Details_About_Predefined_Scheduled_Processes_Procedure.htm#ViewingDetailsAboutPredefinedSchedu-EFCAE12E

19 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

FileEncryption=PGPUNSIGNED,FA_ALIAS=ERP_CLOUD_KEY,CUS
TOMER_ALIAS=CUSTOMER_ERP_KEY

Response
Code

The response code that returns the request identifier for the first
import job in the joblist - which is a load interface job.

OUT java.lang.Long

Note

When a file upload to the UCM server fails, the remaining ESS jobs aren’t executed and a response code of zero (0) appears.

The following table provides information on the notification codes:

Digit Position Digit Value Meaning

First digit 1 E-mail notification

2 Bell notification

3 Email and bell notification

Second digit 0 Send in any case (import failed or succeeded)

1 Send on import success

2 Send on import failure

Job Details

The job details include the job definition and package names, as well as the job parameters of the imported object. The

following options may be used to specify the Job Details parameter associated with the importBulkData operation:

 Specify the Job Details parameter directly in the request payload

 Add the Job Property file as part of the data ZIP file

 Upload the Job Properties file to the UCM and add JobDetailFileName=<FileName.properties> in jobOptions

See Job Property File for the Bulk Import Process for advanced features on job details.

To get the job package, definition name, and list of parameters, see Viewing Details about Predefined Scheduled

Processes: Procedure in the File-Based Data Import for Oracle Financials Cloud guide in the Oracle Help Center at

http://docs.oracle.com. The following illustrates how to get the job details for a journal import:

http://docs.oracle.com/cloud/latest/financialscs_gs/OEFBF/Viewing_Details_About_Predefined_Scheduled_Processes_Procedure.htm#ViewingDetailsAboutPredefinedSchedu-EFCAE12E
http://docs.oracle.com/cloud/latest/financialscs_gs/OEFBF/Viewing_Details_About_Predefined_Scheduled_Processes_Procedure.htm#ViewingDetailsAboutPredefinedSchedu-EFCAE12E

20 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

 Figure 4: Sample page to get job details

Specify the Job Details Parameter Value as Part of the Request Payload

The following example illustrates the Journal Import process with the parameters included in the request payload:

<soap:Body>

 <ns1:importBulkData

xmlns:ns1="http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/types/"

>

 <ns1:document

xmlns:ns2="http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/">

 <ns2:Content>

UEsDBBQAAAAIAKSUz0guTciD5gAAAKwDAAAPAAAAR2xJbnRlcmZhY2UuY3N2tZLBasMwDIbvg72DHkB1JFkJcW8tyXbZwliz7hxabwSyZCT

dYW8/Z/SWFgZm/8EY+/sl9KOqfEVGIcoTlsQy1n46bZuu6Q8en/3HcPJQj00/vfkRd/dFQANHmpDDDRIjESEz03z5PfCqQpcsNTZHZFFWkw

X27qvr4NwP6u9PDysotzt48Md3P65h307t0MP59cmP7XBcQ+EPKwp1Yu1LOeE8dXLxb1ZZFbc31aXQ4FpqRfkYk1rAXMrinLGBykScqiOjW

fT0kfal/iG8zUvUylmb5mlYupkRtcqkRiV69Ej7Un9K7gdQSwECFAAUAAAACACklM9ILk3Ig+YAAACsAwAADwAAAAAAAAABACAAAAAAAAAA

R2xJbnRlcmZhY2UuY3N2UEsFBgAAAAABAAEAPQAAABMBAAAAAA==</ns2:Content>

 <ns2:FileName>JournalsImportTEST_1234.zip</ns2:FileName>

 </ns1:document>

 <ns1:jobDetails

xmlns:ns2="http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/">

 <ns2:JobName>oracle/apps/ess/financials/generalLedger/programs/common,JournalImportLauncher</ns2:JobName

>

 <ns2:ParameterList1061,Payables,1,ALL,N,N,N </ns2:ParameterList>

 </ns1:jobDetails>

 <ns1:notificationCode>30</ns1:notificationCode>

http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/types/
http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/types/
http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/
http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/

21 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

 <ns1:callbackURL>http://hostname:port/myCallbackService</ns1:callbackURL>

 <ns1:jobOptions></ns1:jobOptions>

 </ns1:importBulkData>

</soap:Body>

Figure 5: Sample request payload for the Journals Import process

Sample Response from the importBulkData Operation

The importBulkData operation response contains the Request ID of the job loading data into the respective product interface

table.

<env:Body xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

wsu:Id="Body-Xm0FCudjyFrfJWAmQDXCvw22">

 <ns0:importBulkDataResponse

xmlns:ns0="http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/types/"

>

 <result

xmlns="http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/types/">252

9</result>

 </ns0:importBulkDataResponse>

</env:Body>

Figure 6: Response payload for the importBulkData web service operation

Operation: exportBulkData

The following table lists the parameters for the exportBulkData operation:

Parameter
Name

Description Parameter
(In/Out)

Mandatory Type

Job Name Job package name, Job definition name, both comma
separated.

IN Yes java.lang.String

Parameter List ESS job parameters of the ESS job, comma separated. If the
job does not have parameters, enter #NULL.

IN Yes java.lang.String

Notification
Code

A two-digit number that determines how and when a notification
is passed for the status of the export job. See the table below
for the notification code values.

IN No java.lang.String

Callback URL The callback URL of the web service you implemented to
receive the ESS job status upon job completion.

IN No java.lang.String

Job Options

Optional parameters comma separated.

To enable data file encryption, you must provide the following
options:

FileEncryption=PGPUNSIGNED or PGPSIGNED

FA_ALIAS=<ERP Cloud Key Alias Name>

CUSTOMER_ALIAS=<Customer Key Alias Name>

IN No java.lang.String

22 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Example:
FileEncryption=PGPUNSIGNED,FA_ALIAS=ERP_CLOUD_KE
Y,CUSTOMER_ALIAS=CUSTOMER_ERP_KEY

Response
Code

The response code that returns the request identifier of the
export job.

OUT java.lang.Long

The following illustration highlights a sample request payload of the exportBulkData operation:

<soap:Body>

 <ns1:exportBulkData

xmlns:ns1="http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/types/"

>

<ns1:jobName>oracle/apps/ess/financials/commonModules/shared/common/interfaceLoader,InterfaceLoaderPurge</n

s1:jobName>

 <ns1:parameterList>48,1001</ns1:parameterList>

 <ns1:jobOptions></ns1:jobOptions>

 <ns1:callbackURL>30</ns1:callbackURL>

 <ns1:notificationCode>http://hostname:port/myCallbackService</ns1:notificationCode>

 </ns1:exportBulkData>

</soap:Body>>

Figure 7: Sample request payload for the exportBulkData operation

Operation: getDocumentForDocumentId

The getDocumentForDocumentId operation downloads the job output file generated by the importBulkData operation or data

file extracted by exportBulkData operation. This operation requires application user access and access to the

AttachmentsRead role.

For more information on assigning a user with this access, see Appendix 1: Security Prerequisites to Download the Job

Output File.

The following table lists the parameters for this operation:

Parameter
Name

Description Parameter
(In/Out)

Mandatory Type

Document ID The UCM document ID from the callback response. IN Yes java.lang.String

return A list of elements, each containing the details of the
downloaded files. The details include the document ID, file
content, file name, content type, file title, author, security
group, and account.

OUT List<DocumentDe
tailsVORowImpl>

The following sample request payload illustrates the Journal Import process:

<soap:Body>

 <ns1:getDocumentForDocumentId

xmlns:ns1="http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/types/"

>

 <ns1:DocumentId>5900</ns1:DocumentId>

 </ns1:getDocumentForDocumentId>

23 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

</soap:Body>

Figure 8: Sample request payload for the getDocumentForDocumentId operation

Security Policy of the Oracle ERP Integration Service

The Oracle ERP Integration Service is secured using the following policy:

oracle/wss11_saml_or_username_token_with_message_protection_service_policy

When a client calls the service, the service must satisfy the message protection policy to ensure that the payload is

transported with encryption, or sent over the SSL transport layer.

A client policy that can be used to meet this requirement is:

oracle/wss11_username_token_with_message_protection_client_policy

To use this policy, the message must be encrypted using a public key provided by the server. When the message reaches

the server, it can be decrypted by the server's private key. A keystore is used to import the certificate, and it is referenced in

the subsequent client code.

The public key can be obtained from the certificate provided in the service WSDL file. See the following figure for an

example of a certificate that is Base64 encoded.

24 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Figure 9: Example of a certificate in the Oracle ERP Integration Service WSDL file

To use the key contained in this certificate, create a local Keystore and import the certificate into it. For more information,

see Appendix 5: Testing Web Service using a Client Proxy.

Callback Web Service

In practice, customers create and host a callback web service to optimally leverage the callback capabilities provided by the

Oracle ERP Integration Service for notification purposes. The customer callback web service must implement the

onJobCompletion() operation. When a job completes, Oracle ERP Integration Service invokes the customer callback web

service as defined in the request payload of supported operations with callback capabilities, such as the importBulkData

operation.

For more information on Callback Service, see Appendix 11: Creating a Callback Web Service.

25 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Callback Response in JSON Format

The callback response provides execution statuses and request IDs of all the applicable ESS jobs. For example, to import

AP invoices, the following jobs are executed:

1. Load Interface File for Import

i. Transfer File (upload file to UCM)

ii. Load Data to Interface tables

2. Import Invoices

i. Import Invoices Report

The response includes the UCM document ID of the output artifacts, such as the logs of each ESS jobs, and data from the

interface and error tables. This ZIP file can be retrieved using the Operation: getDocumentForDocumentId.

The following callback response provides the Request ID and status of each of the jobs outlined above.

{

 "JOBS":

 [

 {"JOBNAME":"Load Interface File for Import",

 "JOBPATH":"/oracle/apps/ess/financials/commonModules/shared/common/interfaceLoader",

 "DOCUMENTNAME":"apinvoiceimport.zip",

 "REQUESTID":"2529",

 "STATUS":"SUCCEEDED",

 "CHILD":[

 {"JOBNAME":"Transfer File",

"JOBPATH":"/oracle/apps/ess/financials/commonModules/shared/common/interfaceLoader",

 "REQUESTID":"2530",

 "STATUS":"SUCCEEDED"},

 {"JOBNAME":"Load File to Interface",

"JOBPATH":"/oracle/apps/ess/financials/commonModules/shared/common/interfaceLoader",

 "REQUESTID":"2531",

 "STATUS":"SUCCEEDED"}

]

 },

 {"JOBNAME":"Import Invoices",

 "JOBPATH":"/oracle/apps/ess/financials/payables/invoices/transactions",

 "REQUESTID":"2532",

 "STATUS":"SUCCEEDED",

 "CHILD":[

 {"JOBNAME":"Import Invoices Report",

"JOBPATH":"/oracle/apps/ess/financials/payables/invoices/transactions",

 "REQUESTID":"2533",

 "STATUS":"SUCCEEDED"}

]

 }

],

 "SUMMARYSTATUS":"SUCCEEDED",

 "DOCUMENTID":"23456"

}

Figure 10: Sample response from callback

26 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Correcting Load Process Errors

The Load Interface File for Import process ends in error when the load of the data file fails for any individual row. The Load

File to Interface child process ends as an error or warning. All rows that were loaded by the process are deleted and the

entire batch of records is rejected.

Correcting Interface Data Errors

To correct errors:

1. Review the upload error logs.

2. Change any structural or formatting anomalies in the data.

3. Generate the ZIP file containing the CSV files using the respective import template.

4. Upload the corrected file to the UCM server and resubmit the Load Interface File for Import process.

5. Repeat these steps until the process successfully loads all the data.

Correcting Import Process Errors

If the import process fails with errors:

1. Review the errors in the import log.

2. Correct the error records using the applicable ADFdi correction spreadsheets.

For a list of import processes and their corresponding ADFdi correction spreadsheets, see Appendix 7: Error Handling for

Import Jobs.

If auto purge is enabled in your import process, then you cannot use ADFdi. Use these steps:

1. Download the purge erroneous ZIP file from the File Import and Export page.

2. Select the erroneous data records from the interface file and correct them.

3. Follow the FBDI process to resubmit the corrected data.

27 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Purging Interface and Error Tables

Data from the interface and error tables can be purged as part of the following processes:

1. Each File-Based Data Import (FBDI) process initiates a purge process by default. Following the completion of

the import process, the erroneous data to be purged will first be extracted and uploaded to the Oracle

WebCenter Content Server (UCM).

2. Customers also have the capability to manage the purge process directly from the Scheduled Processes page

by launching the Purge Interface Tables process as needed. This process supports the purge of interface data

created from either FBDI or non-FBDI sources.

The purge backup file is stored and associated with the respective UCM import account for reference where needed. The file

can either be downloaded using the Oracle ERP Integration Service or the File Import and Export page. This file is a

consolidated ZIP file that contains the individual interface and error data files in a comma separated values (CSV) format.

For data correction, select and revise any erroneous data from the respective interface spreadsheet file, then upload the

revised interface file again to execute the FBDI process.

For the processes outlined above, the existing inbound, outbound, and erroneous data files older than 30 days that are

stored on the UCM server will automatically be purged for the applicable UCM account.

Operation: extractAndPurge

The extractAndPurge operation extracts data from the interface and error tables, uploads the relevant data file to UCM, then

purges the respective data.

The purge file naming convention is as follows: ImportBulkData_<ImportJobName>_<LoadRequestId>.zip

The following table lists the parameters for this operation:

Parameter
Name

Description Parameter
(In/Out)

Mandatory Type

Request IDs The request ID(s) of load jobs. IN Yes java.lang.String

Notification
Code

A two-digit number that determines how and when a notification
is passed for the status of the import job. See the table below
for the notification code values.

IN Yes java.lang.String

Callback URL The callback URL of the web service you implemented to
receive the ESS job status upon job completion.

IN No java.lang.String

Job Options There are no additional job options for this operation. IN No java.lang.String

The following table provides information on the notification codes:

Digit Position Digit Value Meaning

First digit 1 E-mail notification

2 Bell notification

3 Email and bell notification

Second digit 0 Send in any case (import failed or succeeded)

1 Send on import success

2 Send on import failure

28 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

The following sample request payload illustrates the extractAndPurge process:

<soap:Body>

 <ns1:extractAndPurge

xmlns:ns1="http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/types/"

>

 <ns1:requestIds>1234;1235;1236</ns1:requestIds>

 <ns1:notificationCode>30</ns1:notificationCode>

 <ns1:callbackURL>#NULL</ns1:callbackURL>

 <ns1:jobOptions></ns1:jobOptions>

</ns1:extractAndPurge>

</soap:Body>

Figure 11: Sample request payload for the extractAndPurge operation

To manage the purge process directly from the Scheduled Processes page by launching the Purge Interface Tables process

as needed, see Appendix 17: Purge - UI Based Approach.

29 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Advanced Features

Securing the Inbound or Outbound Data File

Since inbound and outbound data files are transmitted over the Internet and often contain the company’s sensitive

information and financial transactions like journal entries, invoices, payments and bank records, data encryption is a critical

and essential element in implementing your integrations with Oracle ERP Cloud. You can secure data files between Oracle

ERP Cloud and your on premise applications or systems including Platform as a Service (PaaS) applications. This topic

describes how to set up and use encryption keys for secure file transfer. After you perform this setup, you can encrypt and

decrypt files and transfer them between your servers and Oracle ERP Cloud using import and export bulk data processes.

Oracle ERP Cloud supports Pretty Good Privacy (PGP) unsigned encryption with 1024 bits key size. There are two types of

encryption keys:

1. Oracle ERP Cloud PGP Key

2. Customer PGP Key

Oracle ERP Cloud PGP Key

A customer uses the public key to encrypt the inbound file. The import bulk data process will use the private key to decrypt

the file before starting the load and import process. This key can be generated using the Security Console.

Customer PGP Key

A customer uses the private key to decrypt exported files from the Oracle ERP Cloud. The export bulk process will use the

public key to encrypt the outbound file. The customer can import their public key into the Oracle ERP Cloud using the

Security Console.

Note: Customers may use different keys for a different Cloud pod or the same key on multiple Cloud pods.

For more information on managing PGP keys, see Appendix 14: Managing PGP Encryption Keys.

Enabling Encryption in the Import Process

A customer encrypts inbound data file using the cloud public key. Oracle ERP Cloud decrypts this file using a cloud private

key before starting the load and import process. These are the following steps to enable encryption in the import process:

1. Encrypt the data ZIP file using an Oracle ERP Cloud public key. To encrypt inbound data file, see Appendix 15:

How to Encrypt and Decrypt a Data File.

2. In the payload for the importBulkData operation, specify the following job options:

Options Value

FileEncryption PGPUNSIGNED or PGPSIGNED

FA_ALIAS Oracle ERP Cloud Key Alias Name

CUSTOMER_ALIAS Customer Key Alias Name

30 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Example:

<typ:jobOptions>FileEncryption=PGPUNSIGNED,FA_ALIAS=<ERP_CLOUD_KEY>,CUSTOMER_ALIAS=<CUST

OMER_KEY></typ:jobOptions>

Note: Alias names are defined when you generate an Oracle ERP Cloud key or import a customer key.

Enabling Encryption in the Export Process

When enabled, Oracle ERP Cloud encrypts an extracted data file using a customer’s public key and uploads the file to UCM.

These are the following steps to enable encryption in the export process.

1. In the payload for the exportBulkData operation, specify the following job options:

Options Value

FileEncryption PGPUNSIGNED or PGPSIGNED

FA_ALIAS Oracle ERP Cloud Key Alias Name

CUSTOMER_ALIAS Customer Key Alias Name

Note: Alias names are defined when you generate an Oracle ERP Cloud key or import a customer key.

Decrypt the output file using the customer private key. To decrypt an outbound data file, see Appendix 15: How to

Encrypt and Decrypt a Data File.

Job Property File for the Bulk Import Process

The Job Details parameter in the importBulkData operation includes the job definition and package names, as well as the

job parameters of the imported object. To get the job package and definition name, see Viewing Details about Predefined

Scheduled Processes: Procedure in the File-Based Data Import for Oracle Financials Cloud guide in the Oracle Help Center

at http://docs.oracle.com . Use the following advanced options to specify the job details data associated with the

importBulkData operation:

 Generate and add the Job Properties file to the data ZIP file

 Generate and upload the Job Properties file to the UCM applicable account for reusability

See Appendix 12: Creating a Job Property File for the importBulkData Operation for detailed information on how to generate

the Job Property file.

Note

Parameter Precedence:

1. Payload Parameter File in the ZIP data file

2. Parameter File stored on UCM

http://docs.oracle.com/cloud/latest/financialscs_gs/OEFBF/Viewing_Details_About_Predefined_Scheduled_Processes_Procedure.htm#ViewingDetailsAboutPredefinedSchedu-EFCAE12E
http://docs.oracle.com/cloud/latest/financialscs_gs/OEFBF/Viewing_Details_About_Predefined_Scheduled_Processes_Procedure.htm#ViewingDetailsAboutPredefinedSchedu-EFCAE12E

31 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Option 1: Job Property File as Part of the Data ZIP File

The following sample request payload illustrates the Journal Import process with the relevant parameter file, included

together with the import data file in a ZIP file:

<soap:Body>

 <ns1:importBulkData

xmlns:ns1="http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/types/"

>

 <ns1:document

xmlns:ns2="http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/">

 <ns2:Content>

UEsDBBQAAAAIAKSUz0guTciD4QAAAKwDAAAPAAAAR2xJbnRlcmZhY2UuY3N2vZJBS8NAEIXvgv9hf8A0mZmdDbu9tSR60SK26jm0owRiIkk

9+O/dqDebSxc6h2UZvsfjPWZTvQABI/qcOLcEOx2P67qtu73Co773RzW7oe7GVx1ge1tGNHIoOQZYARIgIhARTp+fB+ZmcilcZj0AsZBkRW

RvPtvW/PpFo68PNQtTrbfmTg9vOizNczM2fWf+tg86NP1haUrdL9BDsvz/BCbvAs9mqDbl9dXJ0sxca2V1n9JaxIIjDiGzkSqYg0jATIrk9

Inyi5S3eko6OWudd/HoJobFCqFkwsnRE+VnNvcNUEsDBBQAAAAIAIeUz0g8JMczbAAAAH4AAAAdAAAASm91cm5hbHNJbXBvcnRURVNULnBy

b3BlcnRpZXM1yDEKQjEMBuBd8A4eIBC7uDs4KEUE3wV+a6wP2qQkvsHbi4h822eO0oQxRrBE8GNWaJnRgquoOFqWexXn4VYdPbhY76Z0ssU

V7diH+Stj0fIU/2/8ejpcJ0rbXaIL3rg1CUq0z5nOX5v16gNQSwECFAAUAAAACACklM9ILk3Ig+EAAACsAwAADwAAAAAAAAAAACAAAAAAAA

AAR2xJbnRlcmZhY2UuY3N2UEsBAhQAFAAAAAgAh5TPSDwkxzNsAAAAfgAAAB0AAAAAAAAAAAAgAAAADgEAAEpvdXJuYWxzSW1wb3J0VEVTV

C5wcm9wZXJ0aWVzUEsFBgAAAAACAAIAiAAAALUBAAAAAA==</ns2:Content>

 <ns2:FileName>JournalsImportTEST_1234.zip</ns2:FileName>

 </ns1:document>

 <ns1:jobDetails></ns1:jobDetails>

 <ns1:notificationCode>30</ns1:notificationCode>

 <ns1:callbackURL>http://hostname:port/myCallbackService</ns1:callbackURL>

 <ns1:jobOptions></ns1:jobOptions>

 </ns1:importBulkData>

</soap:Body>

Figure 12: Sample request payload for the Journals Import process with the parameter file included with the import data in a ZIP file

The following sample job property file for Journals Import (JournalsImportTEST.properties) is included with the import data

file in a ZIP file:

oracle/apps/ess/financials/generalLedger/programs/common,JournalImportLauncher,JournalsI

mportTEST,1061,Payables,1,ALL,N,N,N

Figure 13: Sample parameter file for Journals Import

See Appendix 12: Creating a Job Property File for the importBulkData Operation for detailed information on creating the job

properties file.

http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/types/
http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/types/
http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/

32 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Option 2: Upload the Job Properties File to UCM for Reuse

After the file is uploaded to the UCM applicable account, there are two options to reuse the file:

1. Add JobDetailFileName=<FileName.properies> in <jobOptions>

2. Follow file naming convention as defined in Appendix 12: Creating a Job Property File for the importBulkData

Operation.

The following sample payload illustrates the Journal Import process with the job properties file uploaded to UCM. The

parameter file should be uploaded using the specific UCM account associated with a particular import process:

<soap:Body>

 <ns1:importBulkData

xmlns:ns1="http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/types/"

>

 <ns1:document

xmlns:ns2="http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/">

 <ns2:Content>

UEsDBBQAAAAIAKSUz0guTciD5gAAAKwDAAAPAAAAR2xJbnRlcmZhY2UuY3N2tZLBasMwDIbvg72DHkB1JFkJcW8tyXbZwliz7hxabwSyZCT

dYW8/Z/SWFgZm/8EY+/sl9KOqfEVGIcoTlsQy1n46bZuu6Q8en/3HcPJQj00/vfkRd/dFQANHmpDDDRIjESEz03z5PfCqQpcsNTZHZFFWkw

X27qvr4NwP6u9PDysotzt48Md3P65h307t0MP59cmP7XBcQ+EPKwp1Yu1LOeE8dXLxb1ZZFbc31aXQ4FpqRfkYk1rAXMrinLGBykScqiOjW

fT0kfal/iG8zUvUylmb5mlYupkRtcqkRiV69Ej7Un9K7gdQSwECFAAUAAAACACklM9ILk3Ig+YAAACsAwAADwAAAAAAAAABACAAAAAAAAAA

R2xJbnRlcmZhY2UuY3N2UEsFBgAAAAABAAEAPQAAABMBAAAAAA==</ns2:Content>

 <ns2:FileName>JournalsImportTEST_1234.zip</ns2:FileName>

 </ns1:document>

 <ns1:jobDetails></ns1:jobDetails>

 <ns1:notificationCode>30</ns1:notificationCode>

 <ns1:callbackURL>http://hostname:port/myCallbackService</ns1:callbackURL>

 <ns1:jobOptions>JobDetailFileName=JournalsImportTEST.properties</ns1:jobOptions>

 </ns1:importBulkData>

</soap:Body>

Figure 14: Sample request payload for the Journals Import process with the parameter file uploaded to UCM

Specifying Multiple Threads in Bulk Import

To increase the throughput when importing data, users can specify multiple threads in the import process. It supports a

maximum of 10 threads for sequential processing and a maximum of 5 threads for parallel processing. After the data file is

loaded in the interface table, the import process will start batch processing based on number of job parameters records

defined in a property file and job option in the payload. The default option is sequential and the following property in

<jobOptions> attribute could enable parallel processing:

<jobOptions>ExecutionMode=Parallel<jobOptions>

http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/types/
http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/types/
http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/

33 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

In a job property file, you must enter multiple records with parameter values that can import data in batches either

sequentially or concurrently. In sequential pattern, an import process stops when a batch fails. The remaining batch

processes will not be executed and callback will include all the details including the failed process.

The following is the sample property file of journals import where data file contains 3 different ledgers:

oracle/apps/ess/financials/generalLedger/programs/common,JournalImport

Launcher,GL,1061,Payables,1,ALL,N,N,N

oracle/apps/ess/financials/generalLedger/programs/common,JournalImport

Launcher,GL,1061,Payables,2,ALL,N,N,N

oracle/apps/ess/financials/generalLedger/programs/common,JournalImport

Launcher,GL,1061,Payables,3,ALL,N,N,N

ERP will import three ledgers either sequentially or concurrently depending on the “ExecutionMode” type. The job package

and name must be same for all the records.

Optimized Management of Large Data Files

The Oracle ERP Integration Service provides the capability to attach data files instead of converting data files to base64

encoding. The attachment feature leverages the Message Transmission and Optimization Mechanism (MTOM) approach by

reducing the request payload size as file content is not part of the payload (in base64 encoding). This process optimizes the

handling of large files for both inbound and outbound processes. You need minor changes in your web service proxy code to

enable MTOM support.

For more information about the MTOM changes, see Appendix 16: Large File Optimization (MTOM) Proxy Client Code

Changes.

34 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Appendix 1: Security Prerequisites to Download the Job Output File

 ESS job and output files are placed in the Attachments Security group under the Oracle Universal Content Management

server (Oracle WebCenter Content server). You must have access to the security group called Attachments to download the

log file or the output file with the ERP Integration Service.

This access can be granted via the security role called AttachmentsUser.

Use the Security Console to grant access to the AttachmentsUser role. The Security Console can be accessed in the

following ways:

 Use the Manage Job Roles or Manage Duties tasks in the Setup and Maintenance work area.

 Select Navigator - Tools - Security Console

Access to the Security Console is provided by the predefined IT Security Manager role.

Figure 15: Accessing the Security Console from the Navigator

The role AttachmentsUser is inherited by the predefined Employee and Contingent Worker roles. You can verify this

inheritance by querying the role AttachmentsUser from the Security Console, and use the Expand Toward Users and show

the Roles option.

35 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Figure 16: Verifying inheritance of AttachmentUser role

After reviewing the role inheritance of the AttachmentsUser role, review the users that are currently assigned the

AttachmentsUser role.

You can verify role assignments to users by querying the role AttachmentsUser from the Security Console and use the

Expand Toward Users and show Users option.

Figure 17: Review user assignments to AttachmentsUser role

36 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

In Figure 17 above, the user John.Reese have been assigned the AttachmentsUser role through the predefined Employee

role.

Lastly, verify that the Attachments security group is listed in the UCM Search page.

Figure 18: Search page for UCM to identify whether user has access to Attachments security group

37 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Appendix 2: Sample Code for Preparing a Data File for Inbound and Outbound Flow

The following example illustrates sample code for preparing a data file for the inbound flow.

Sample File Name: utilEncodeBase.java

import java.io.ByteArrayOutputStream;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileReader;

import java.io.IOException;

import java.io.InputStream;

import org.apache.commons.codec.binary.Base64;

public class utilEncodeBase {

 public utilEncodeBase() {

 super();

 }

 public static void main(String[] a) throws Exception {

 // Enter the filename as input

 File br = new File(a[0]);

 // Convert the file into Byte

 byte[] bytes = loadFile(br);

 // Call the api for Base64 encoding

 byte[] encoded = Base64.encodeBase64(bytes);

 String encStr = new String(encoded);

 // Print the file

 System.out.println(encStr);

 } private static byte[] getByteArray(String fileName) {

 File file = new File(fileName);

 FileInputStream is = null;

 ByteArrayOutputStream buffer = new ByteArrayOutputStream();

 int nRead;

 byte[] data = new byte[16384];

 try {

 is = new FileInputStream(file);

 while ((nRead = is.read(data, 0, data.length)) != -1) {

 buffer.write(data, 0, nRead);

 }

 buffer.flush();

 } catch (IOException e) {

 System.out.println("In getByteArray:IO Exception");

 e.printStackTrace();

 }

 return buffer.toByteArray();

 } private static byte[] loadFile(File file) throws IOException {

 InputStream is = new FileInputStream(file);

 long length = file.length();

 if (length > Integer.MAX_VALUE) {

 // File is too large

 }

 byte[] bytes = new byte[(int)length];

 int offset = 0;

 int numRead = 0;

 while (offset < bytes.length &&

 (numRead = is.read(bytes, offset, bytes.length - offset)) >=

 0) {

 offset += numRead;

 }

 if (offset < bytes.length) {

 throw new IOException("Could not completely read file " +

 file.getName());

38 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

 }

 is.close();

 return bytes;

 }

}

Figure 19: Sample code for the inbound data flow

The following example illustrates sample code for preparing a data file for the outbound flow.

Sample FileName: utilDecodeBase.java

import java.io.ByteArrayOutputStream;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.FileReader;

import java.io.IOException;

import java.io.InputStream;

import org.apache.commons.codec.binary.Base64;

public class utilDecodeBase {

 public utilDecodeBase() {

 super();

 }

 public static void main(String[] a) throws Exception {

 System.out.println("Start");

 // Read the inputsteam

 String encStr = a[0];

 // Run the api to perform the decoding

 byte[] rbytes = Base64.decodeBase64(encStr.getBytes());

 // Put the location for the output file

 FileOutputStream os = new FileOutputStream("/tmp/Test1234.zip");

 os.write(rbytes);

 os.close();

 }

}

Figure 20: Sample code for the outbound data flow

39 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Appendix 3: Predefined Target UCM Accounts

You can transfer data files to predefined accounts in the Oracle WebCenter Content server (UCM) that correspond to the

interface table.

To find the UCM account:

1. Open the File Based Data Import guide for your cloud service.

2. Locate your respective import process. For example, Journal Import.

3. View the UCM account in the Details section.

40 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Appendix 4: ESS Job Execution Status

The following table lists the execution statuses of the ESS jobs with descriptions. These statuses are returned by the

getEssJobStatus operation.

ESS Job Execution Status Description User Action

COMPLETED Request has completed. This is an intermediary status and is returned
when the child processes are generated.

Check the status of the ESS job to ascertain
whether the return status changes to
SUCCEEDED or ERROR.

BLOCKED Request is blocked by one or more
incompatible requests.

Wait for the completion of the incompatible
request and resubmit the process.

SUCCEEDED Request completed and was successful. Check the details of the completed process and
proceed with any post processing.

ERROR Request ran and resulted in error. Download the details of the error and correct the
data.

ERROR_AUTO_RETRY Request ran, resulted in an error, and is
eligible for automatic retry.

Resubmit the process after some time.

WARNING Request ran and resulted in a warning. Download the details of the process. Check the
reason for the warnings and take the necessary
action to correct the input data.

RUNNING Request is processed. No action.

CANCELED Request was canceled. Resubmit the request if required.

http://docs.oracle.com/cd/E28271_01/apirefs.1111/e26229/oracle/as/scheduler/State.html#COMPLETED
http://docs.oracle.com/cd/E28271_01/apirefs.1111/e26229/oracle/as/scheduler/State.html#BLOCKED
http://docs.oracle.com/cd/E28271_01/apirefs.1111/e26229/oracle/as/scheduler/State.html#SUCCEEDED
http://docs.oracle.com/cd/E28271_01/apirefs.1111/e26229/oracle/as/scheduler/State.html#ERROR
http://docs.oracle.com/cd/E28271_01/apirefs.1111/e26229/oracle/as/scheduler/State.html#ERROR_AUTO_RETRY
http://docs.oracle.com/cd/E28271_01/apirefs.1111/e26229/oracle/as/scheduler/State.html#WARNING
http://docs.oracle.com/cd/E28271_01/apirefs.1111/e26229/oracle/as/scheduler/State.html#RUNNING
http://docs.oracle.com/cd/E28271_01/apirefs.1111/e26229/oracle/as/scheduler/State.html#CANCELLED

41 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Appendix 5: Testing Web Service using a Client Proxy

Perform the following steps to test a web service operation using JDeveloper:

1. Import a new certificate in the keystore (for Internet Explorer).

2. Create a web service client proxy and add the OWSM policy.

3. Test the web service.

Steps to Import a New Certificate in the Keystore

42 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

1. Export the certificate from the browser to the file, using the following steps:

i. Access the SSL URL for any web service using Microsoft Internet Explorer.

ii. In Internet Explorer, click Tools > Internet Options.

iii. On the Content tab, click Certificates. On the Personal tab, select the Baltimore CyberTrust Root

certificate and click View. The certificate hierarchy appears; export the top two certificates (Baltimore

CyberTrust Root and Verizon Akamai SunServer CA G14-SHA1).

Figure 21: Select the certificate

43 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

iv. On the Certification Path tab, select Baltimore CyberTrust Root and click View Certificate.

v. On the Details tab, select Copy to File. The Certificate Export Wizard appears.

vi. Click Next > Next and enter a name and location for the file you want to export.

vii. Change the encoding to Base-64 and click Next.

viii. Provide the file name and click Finish.

ix. Repeat steps iv to viii for the Verizon Akamai SunServer CA G14-SHA1 certificate.

 When using other web browsers, perform similar steps. The navigation path may differ in the web browsers used.

2. Type the following command to import a certificate into keystore:

keytool -import -trustcacerts -file <filename> -alias <aliasname> -keystore default-

keystore.jks - storepass welcome1

3. Run the following command to verify if the trust store contains the imported certificates:

keytool -list -v -keystore <filename> -storepass welcome1 | grep -i Verizon

Create a Proxy Client and Add the OWSM Policy

1. Create a new project and select Web Services Proxy.

2. Set the client style to JAX-WS Style.

3. Select the web service description, for example,

https://<Hostname>.<Domain Name>:<Port

No>/publicFinancialCommonErpIntegration/ErpIntegrationService?WSDL.

4. Select the Copy WSDL Info Project check box. Specify the default mapping options.

5. Specify the asynchronous method.

6. Select the Do not generate any asynchronous methods option.

7. Click Finish.

8. Once the proxy client code is generated, add the following variables:

 jksFPath: File location that has the certificate to add to the keystore. For example,

D:\fintuilwdestapp\Project5\client.jks

 jksPassword: Password to access WSDL. For example, Welcome1.

 trustStore: Path where the certificates are stored, used during java installation by default.

 trustStorePassword: Password for truststore.

 Username: User name to sign in to the service.

 Password: Password for the user to sign in to the service. For example, Welcome1.

 endpointNonSSLURL: URL for the FinUtilService service.

https://efops-rel9st1-cdrm1-external-fin.us.oracle.com/finFunShared/FinancialUtilService?WSDL

44 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

 serviceName: Schema of the service used to add the policies.

 securityFeature: Policy used to add to the service.

Note

An example of a message protection policy is policy:oracle/wss_username_token_over_ssl_client.

9. Create the invokeServiceWithUsernameTokenMessageProtectionPolicy() method to add policy.

Test Upload File to UCM using Web Service

To test the file upload to the UCM server:

1. Create a sample payload associated with the uploadFileToUcm operation.

2. Create the method invokeUpload to call the operation uploadFileToUcm.

Export the Certificate

To export the certificate associated with the web service from the browser, invoke the end point URL for the web service

https://<hotaname>.<domainname>/publicFinancialCommonErpIntegration/ErpIntegrationService?W

SDL.

1. Copy the content from the XML element dsig:X509Certificate.

45 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Figure 22: Sample content of the dsig:X509Certificate

2. To use the key contained in this certificate, create a local KeyStore and import the certificate into it:

2.1. Create a new file with any name you like. You must change the extension to .cer to indicate that it is a

certificate file.

2.2. Using a text editor, open the file you just created and enter “----BEGIN CERTIFICATE----“on the first line.

2.3. In the next line, copy the Base64 encoded certificate from the service WSDL file to the newly created

certificate file.

2.4. Add "-----END CERTIFICATE-----" on a new line and save the file. Now you have a certificate containing the

public key from the server.

2.5. Open the command line and change the directory to $JAVA_HOME/bin. Use the following command to create

a KeyStore and import the public key from the certificate:

keytool -import -file <Provide the path of the certification.cer file> -alias orakey - keypass welcome -keystore

<Provide the path where the jks file needs to be created(including the file name)> -storepass welcome.

Figure 23: Sample certificate file (<Filename>.cer)

46 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

3. Add the variables to the proxy client code.

ErpIntegrationServiceSoapHttpPortClient.java

public class ErpIntegrationServiceSoapHttpPortClient

{

@WebServiceRef

private static ErpIntegrationService_Service ErpIntegrationService_Service;

private static final AddressingVersion WS_ADDR_VER = AddressingVersion.W3C;

// Add the additional variables

 private final String jksFPath = "D:\\fintuilwdestapp\\Project5\\client.jks";

 private final String jksPassword = "Welcome1";

 private final String trustStore = "C:\\ProgramFiles\\Java\\jdk1.7.0_51\\jre\\lib\\security\\cacerts";

 private final String trustStorePassword = "";

 private final String username = "finuser1";

 private final String password = "Welcome1";

 private String endpointNonSSLURL = "https://efops-rel9st1-cdrm1-external-fin.us.oracle.com/

publicFinancialCommonErpIntegration/ErpIntegrationService";
 private static final QName servicename = new

QName("http://xmlns.oracle.com/apps/financials/commonModules/shared/ErpIntegrationService/","ErpIntegra

tionService");

 private SecurityPolicyFeature[] securityFeature = new SecurityPolicyFeature[] { new

SecurityPolicyFeature("policy:oracle/wss_username_token_over_ssl_client_policy") };

 private ErpIntegrationService ErpIntegrationService;

// End add the additional variables

public static void main(String [] args)

 { System.out.println("inside main");

 ErpIntegrationServiceSoapHttpPortClient f = new ErpIntegrationServiceSoapHttpPortClient();

 f.invokeServiceWithUsernameTokenMessageProtectionPolicy();

 String retStatus = f.invokeUpload();

 //long submittedJobId = f.invokeSubmitJob(retStatus);

 //f.invokeEssJobStatus(submittedJobId);

 //f.invokeDownloadESSJobExecDetails(submittedJobId);

 }

Figure 24: Sample proxy code with variables

http://xmlns.oracle.com/apps/financials/commonModules/shared/financialUtilService/

47 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

4. Create the invokeServiceWithUsernameTokenMessageProtectionPolicy()method to add the policy.

public void invokeServiceWithUsernameTokenMessageProtectionPolicy() {

 System.out.println("inside invokeservice");

 URL wsdlDoc = null;

 try {

 wsdlDoc = new URL("https://efops-rel9st1-cdrm1-external-

fin.us.oracle.com/publicFinancialCommonErpItegration/ErpIntegrationService?wsdl");

 }catch(MalformedURLException e){

 e.printStackTrace();

 }

 System.setProperty("javax.net.ssl.trustStore", trustStore);

 System.setProperty("javax.net.ssl.trustStorePassword", trustStorePassword);

 ErpIntegrationService_Service = new ErpIntegrationService_Service(wsdlDoc, servicename);

 ErpIntegrationService =

ErpIntegrationService_Service.getErpIntegrationServiceSoapHttpPort(securityFeature);

 WSBindingProvider wsbp = (WSBindingProvider)ErpIntegrationService;

 Map<String, Object> requestContext = wsbp.getRequestContext();

 requestContext.put(BindingProvider.USERNAME_PROPERTY, username);

 requestContext.put(BindingProvider.PASSWORD_PROPERTY, password);

 requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, endpointNonSSLURL);

 requestContext.put(ClientConstants.WSSEC_KEYSTORE_TYPE, "JKS");

 requestContext.put(ClientConstants.WSSEC_KEYSTORE_LOCATION, jksFPath);

 requestContext.put(ClientConstants.WSSEC_KEYSTORE_PASSWORD, jksPassword);

 System.out.println("Finished invokeservice");

}

Figure 25: Sample method code to add the policy

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <ns1:uploadFileToUcm

xmlns:ns1="http://xmlns.oracle.com/apps/financials/commonModules/shared/ErpIntegrationService/types/">

 <ns1:document

xmlns:ns2="http://xmlns.oracle.com/apps/financials/commonModules/shared/ErpIntegrationService/">

 <ns2:Content>UEsDBBQAAAAIAEhrrkQSDhHq5BLBQYAAAAAAQABAD0AAAATPQEAAAA=</ns2:Content>

 <ns2:FileName>TestUploadFileName.zip</ns2:FileName>

 <ns2:ContentType>zip</ns2:ContentType>

 <ns2:DocumentTitle>Sample File1</ns2:DocumentTitle>

 <ns2:DocumentAuthor>finuser1</ns2:DocumentAuthor>

 <ns2:DocumentSecurityGroup>FAFusionImportExport</ns2:DocumentSecurityGroup>

 <ns2:DocumentAccount>fin$/generalLedger$/import$</ns2:DocumentAccount>

 </ns1:document>

 </ns1:uploadFileToUcm>

 </soap:Body>

</soap:Envelope>

Figure 26: Payload for the uploadFileToUCM operation

48 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

private String invokeUpload() {

 System.out.println("inside invokeupload");

 ObjectFactory objectFactory = new ObjectFactory();

 DocumentDetails documentDet = new DocumentDetails();

 String fileNameWithPath = "C:\\Users\\NGARLAPA\\Desktop\\Sample.zip";

 String fileName = "Sample.zip";

 String contentType = "zip";

 String title = "Journals Import";

 String ucmAccountInfo = "fin$/generalLedger$/import$";

 String ucmSecurityGroup = "FAFusionImportExport";

documentDet.setContent(objectFactory.createDocumentDetailsContent(getByteArray(fileNameWithPath)));

documentDet.setContentType(objectFactory.createDocumentDetailsContentType(contentType));

documentDet.setDocumentAccount(objectFactory.createDocumentDetailsDocumentAccount(ucmAccountInfo));

documentDet.setDocumentAuthor(objectFactory.createDocumentDetailsDocumentAuthor(username));

documentDet.setDocumentSecurityGroup(objectFactory.createDocumentDetailsDocumentSecurityGroup(ucmSecuri

tyGroup));documentDet.setDocumentTitle(objectFactory.createDocumentDetailsDocumentTitle(title));

documentDet.setFileName(objectFactory.createDocumentDetailsFileName(fileName));

 UploadFileToUcm uploadFileToUcm = new UploadFileToUcm();

 uploadFileToUcm.setDocument(documentDet);

UploadFileToUcmResponse retStatus = null;

 try {

 retStatus = ErpIntegrationService.uploadFileToUcm(uploadFileToUcm);

 System.out.println("File successfully Uploaded.Status is:" + retStatus.getResult());

 } catch (Exception e) {

 e.printStackTrace();

 }

 return retStatus.getResult();

 }

 private byte[] getByteArray(String fileName) {

 File file = new File(fileName);

 FileInputStream is = null;

 ByteArrayOutputStream buffer = new ByteArrayOutputStream();

 int nRead;

 byte[] data = new byte[16384];

 try {

 is = new FileInputStream(file);

 while ((nRead = is.read(data, 0, data.length)) != -1) {

 buffer.write(data, 0, nRead);

 }

 buffer.flush();

 } catch (IOException e) {

 System.out.println("In getByteArray:IO Exception");

 e.printStackTrace();

 }

 return buffer.toByteArray();

 }

Figure 27: Method invokeUpload() to invoke the uploadFileToUCM operation

49 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Appendix 6: Automate Web Service Invocation Using JDeveloper 11

The automation approach for the web service invocation includes the following:

 Compile the web service client proxy project created in Appendix 5.

o Add the following JDeveloper 11g jars to the deployment profile:

 weblogic.jar : $MW_HOME/wlserver_10.3/server/lib/weblogic.jar

 jrf.jar: $MW_HOME/oracle_common/modules/oracle.jrf_11.1.1/jrf.jar

 Create the deployment profile for the project:

o Click Project Properties.

o Click Deployment.

o Click New.

o Select Archive Type as JAR File and specify the name.

o Select the Include Manifest File (META-INF/MANIFEST.MF) option and specify the value for Main

Class.

For example,

oracle.apps.finacial.testUtil.proxy.client.ErpIntegrationServiceSoapHttpPortC

lient

 Generate the jar file and execute the following command.

For example, java –classpath $CLASSPATH –jar <JAR File Name>

50 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Appendix 7: Error Handling for Import Jobs

To address errors generated during the import process, use the following methods:

 If an ADFdi correction spreadsheet is available, use the spreadsheet to correct the data in the interface table and

resubmit the import process.

 If no correction spreadsheet is available, use the purge process to delete all the records from the interface table.

Correct the data in the original data file and upload the file again using the correct UCM account.

Repeat the process until your data is successfully imported.

Error Handling Processes

The following table lists the existing error handling processes which may be used to address any errors encountered during

the import process for each respective product interface table.

Import Process Correction Spreadsheet Steps

Import Payables Invoices CorrectImportErrors.xlsx In the Invoices work area, navigate to Correct Import Errors in the
Tasks region.

Import AutoInvoice ManageInvoiceErrors
Spreadsheet.xlsx

In the Billing work area, navigate to the Review AutoInvoice Errors
table.

Click Number of Errors.
Select the Manage AutoInvoice Lines spreadsheet.

Process Receipts through
Lockbox

ManageLockboxErrors.xlsx In the Receivables work area, navigate to Receivable Balances.

Fixed Asset Mass Additions
Import

PrepareSourceLines.xlsx In the Fixed Assets work area, navigate to Additions.

Select Pending Source Lines.

Fixed Asset Mass Adjustments
Import

UpdateMassFinancialTrans
action.xlsm

In the Fixed Assets work area, navigate to Financial Transactions.

Select Pending Mass Financial Transactions.

Fixed Asset Mass Retirements
Import

UpdateMassRetirements.xls
m

In the Fixed Assets work area, navigate to Retirements.

Select Pending Retirements.

Fixed Asset Mass Transfers
Import

UpdateMassTransfers.xlsm In the Fixed Assets work area, navigate to Pending Mass
Transfers.

Select Pending Mass Transfers.

Journal Import JournalCorrections.xlsx In the Journals work area, navigate to Correct Import Errors in the
Tasks region.

51 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Appendix 8: Using XML Templates to Generate Data Files

The File Based Data Import guides in the Oracle Help Center (http://docs.oracle.com) include XML integration templates that

you can use with Oracle Data Integrator (ODI) to generate import files from your external data. Oracle Data Integrator

provides a solution for integrating complex data from a variety of sources into Oracle Fusion applications.

To use the XML templates and generate the import files, you must:

 Install and set up Oracle Data Integrator

 Create source and target models

 Create integration projects

Note

For Oracle Cloud implementations, you must upload the ZIP file to the content management repository in Oracle Cloud. For

non-Cloud implementations, you can streamline the data integration process by installing the content management

document transfer utility, which uses Oracle Data Integrator to transfer the ZIP file.

Installing and Setting Up Oracle Data Integrator

To use the XML templates for generating the import files:

1. Install Oracle Data Integrator.

For more information about installing Oracle Data Integrator, see Oracle Fusion Middleware Installation Guide for

Oracle Data Integrator.

2. Set up Oracle Data Integrator.

For more information about setting up Oracle Data Integrator, see Oracle Fusion Middleware Developer's Guide

for Oracle Data Integrator.

Creating Source and Target Models

Create ODI models for both the source and target data stores. You determine the source models based on the system or

technology of the external data that you need to import into your Oracle Fusion application. Create the target models by

importing the XML files that you download from the Details section of the File Based Data Import guides in the Oracle Help

Center (http://docs.oracle.com).

For more information on creating a reverse engineering model, see Oracle Fusion Middleware Developer's Guide for Oracle

Data Integrator.

Configuring Integration Projects

Create and configure an integration project by selecting the knowledge modules, creating the interfaces, and mapping the

source and target data stores.

52 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

For more information on creating an integration project, see Oracle Fusion Middleware Developer's Guide for Oracle Data

Integrator.

Opening the XML Template

To prepare your data in Oracle Data Integrator, download the XML templates using the following steps:

1. Import the family-level template as a model folder.

2. Import the product-level template as a model folder within the family-level model folder.

3. Import the product template as a model within the product-level model folder.

4. Create the integration project.

5. Create the package.

6. Add and configure:

 Integration projects

 Content management document transfer utility

7. Execute the package. The package generates the CSV file and compresses it into a ZIP file.

Using XML Integration Templates to Generate Data Files

Use XML templates in Oracle Data Integrator to prepare your external data for the load and import process.

The File Based Data Import guides in the Oracle Help Center (http://docs.oracle.com) include three types of XML templates

that you import as target models in your Oracle Data Integrator repository:

 Family level

 Product level

 Product

Family-Level XML Files

53 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

A family-level XML file is common to a group of product-level model folders and product models.

Consider the following points when you use family-level XML files:

 Use the family-level XML file to support assets in the family, for example, Oracle Fusion Financials or Oracle

Fusion Human Capital Management.

 Import the family-level XML file into your Oracle Data Integrator repository prior to importing other XML files.

 Import one family-level XML file as a model folder for each family of products.

 Import each family-level XML file as a top-level model folder.

 Import the family-level XML file one time; it supports all subsumed product-level model folders.

 Select Synonym Mode Insert Update as the import type.

Product-Level XML Files

A product level XML file is common to a group of product models.

Consider the following points when you use product-level XML files:

 Use the product-level XML file to support assets in the product line, for example, Fixed Assets, General Ledger, or

Payables.

 Import one product-level XML file as a model folder for each line of products.

 Import the product-level XML file as a model folder into your Oracle Data Integrator repository.

 Import the family-level XML file before you import product XML files.

 Import each product-level XML file as a mid-level model folder within the appropriate family-level model folder.

 Import the product-level XML file one time; it supports all subsumed product models.

 Select Synonym Mode Insert Update as the import type.

Product XML Files

A product XML file represents a specific interface table asset.

Consider the following points when you use product XML files:

 Import one product XML file as a model for each interface table or set of tables, for example, MassAdditions.

 Import the product XML file as a model into your Oracle Data Integrator repository after you import the product-

level XML file.

 Import each product XML file as a model within the appropriate product-level model folder.

 Import each product XML file one time. The model is based on File technology.

 Select Synonym Mode Insert Update as the import type.

 After you import the product model, connect the model to the correct logical schema.

54 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Creating Integration Projects That Generate Data Files for Import

When you use Oracle Data Integrator to generate the import data files from the external data sources, you must configure

an integration project. Integration projects are collections of ODI components that provide the procedural details of an

integration from a source to a target. The source is your external data and the target is the import data file that you load and

import into your Oracle Fusion Applications.

To create your integration project, you configure the following components:

 Knowledge modules

 Integration interfaces

Knowledge Modules

Knowledge modules contain the information that Oracle Data Integrator requires to perform a specific set of tasks against a

specific technology or set of technologies. For example, check knowledge modules ensure that constraints on the sources

and targets are not violated, and integration knowledge modules load data to the target tables.

Consider the following points about knowledge modules:

 Knowledge modules that you import into your integration project depend on the source and target technologies, as

well as other integration-specific rules and processes.

 Multiple types of knowledge modules exist in ODI.

 Use the SQL File to Append module to create the import data file.

Integration Interfaces

Integration interfaces contain the sets of rules that define the loading of data from one or more sources to the target.

Consider the following points about integration interfaces:

 The source is the datastore from your external data model.

 The target is the interface table datastore, which is the CSV file from your interface table model.

 After you set up the source and target datastores, map the target fields to the source fields, or map source field

values to target fields or constants.

55 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Appendix 9: Manage Inbound Flow Automation Steps with Separate Web Service
Operations

Inbound data integration is achieved seamlessly using the importBulkData operation from the Oracle ERP Integration

Service. However, for certain use cases, you may want to control the flow and orchestration using separate operations.

The following section describes how to import journals using the individual web service operations. The same process

applies to all the supported FBDI objects.

Perform the following steps to control the orchestration flow using individual operations:

1. Generate the CSV file as previously outlined.

2. Use the following operations to control the orchestration flow:

a. loadandImportData

b. uploadFileToUcm

c. submitESSJobRequest (load to interface tables)

d. getEssJobStatus

e. submitESSJobRequest (load from interface tables to application tables)

f. getEssJobStatus

g. downloadESSJobExecutionDetails

3. Prepare the payload to upload the file to the UCM server by invoking the web service.

The following table lists the payload input parameters for the uploadFileToUcm operation:

Payload Parameter Name Value Comments

Content <Output from the sample
utilEncodeBase.java program>

Run the Base64 encoding sample program to
provide the content value. This sample
program creates a ZIP file as input and
provides the content output.

ContentType Zip Generate the CSV file. The CSV file creates a
ZIP file. Other content types include .txt, and
.csv.

DocumentTitle <Sample Journal Import>

DocumentAuthor <USER1>

DocumentSecurityGroup FAFusionImportExport This is a fixed value and must not be
changed.

DocumentAccount fin$/generalLedger$/import$ To construct this value and add a dollar sign
($) as an escape character before a slash (/),
see Appendix 3: Predefined Target UCM
Accounts.

56 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Use the service tester to call the web service with the payload. Check the response for the document ID. If there is

an error, check the error code in the response.

The uploadFileToUcm operation uploads a file to the UCM server based on the document specified. This operation

requires application user access.

The following table lists the parameters for the uploadFileToUcm operation:

Parameter
Name

Description Parameter
(In/Out)

Mandatory Type

Document

List of elements, each containing the details of the file to be
uploaded. The details include the file content, file name,
content type, file title, author, security group, and account.

Document Attributes:

• Content: File content uploaded to the UCM server. The
value of the content tag is obtained by converting the file
content into Base64 encoding. For a sample program for
Base64 encoding, see Appendix 2: Sample Code for
Preparing a Data File for Inbound and Outbound Flow.

• FileName: Name of the file on the UCM server.

• ContentType: Type of content uploaded such as .zip, .txt,
or .csv.

• DocumentTitle: Title of the file on the UCM server.

• DocumentAuthor: Author of the document.

• DocumentSecurityGroup: A fixed value used to import
and export the documents on the UCM server from Oracle
Fusion. The security group for all the import process is
FAFusionImportExport.

• DocumentAccount: Account under which the file is
uploaded. For more information on the UCM account
associated with the ESS process, see Appendix 3:
Predefined Target UCM Accounts.

IN Yes java.lang.String

Return Returns the document ID of the uploaded file. OUT No java.lang.String

57 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

The following sample payload illustrates the Journal Import process:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <ns1:uploadFileToUcm

xmlns:ns1="http://xmlns.oracle.com/apps/financials/commonModules/shared/erpIntegrationService/types/">

 <ns1:document

xmlns:ns2="http://xmlns.oracle.com/apps/financials/commonModules/shared/erpIntegrationService/">

 <ns2:Content>UEsDBBQAAAAIAEhrrkQSDhHq5BLBQYAAAAAAQABAD0AAAATPQEAAAA=</ns2:Content>

 <ns2:FileName>TestUploadFileName.zip</ns2:FileName>

 <ns2:ContentType>zip</ns2:ContentType>

 <ns2:DocumentTitle>Sample File1</ns2:DocumentTitle>

 <ns2:DocumentAuthor>finuser1</ns2:DocumentAuthor>

 <ns2:DocumentSecurityGroup>FAFusionImportExport</ns2:DocumentSecurityGroup>

 <ns2:DocumentAccount>fin$/generalLedger$/import$</ns2:DocumentAccount>

 </ns1:document>

 </ns1:uploadFileToUcm>

 </soap:Body>

</soap:Envelope>

Figure 28: Sample payload for the Journal Import process

4. Prepare the payload to load data from the file on the UCM server to the GL_INTERFACE table using the Load

Interface File for Import ESS process.

The following table lists the payload input parameters for the submitESSJobRequest operation:

Payload Parameter Name Value Comments

jobPackageName oracle/apps/ess/financials/
commonModules/shared/common/
interfaceLoader

jobDefinitionName InterfaceLoaderController

paramList 15 Value of the Import Journals from the list of
values.

paramList <372750> Document identifier associated with the file
uploaded to the UCM server. The response
payload in step 2 returns the document
identifier value.

paramList N

paramList N

Use the service tester to call the web service with the payload. Check the response for the request ID of the ESS

process.

58 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

The following table lists the parameters for the submitESSJobRequest operation:

Parameter
Name

Description Parameter
(In/Out)

Mandatory Type

jobPackageName ESS job package name. IN Yes java.lang.String

jobDefinitionName ESS job definition name. IN Yes java.lang.String

paramList List of parameters used to call the ESS job. The
order of the parameters is maintained as per the
list. When a parameter isn’t passed, the
corresponding entry in the list must be passed
as “#NULL”.

IN No java.util.List<jav
a.lang.String>

return Request ID is returned OUT java.lang.Long

5. Prepare the payload to verify the status of the request.

The following table lists the payload input parameters for the getEssJobStatus operation:

Payload Parameter Name Value Comments

requestID <3727> The request identifier for the ESS process.

Use the service tester to call the web service with the payload. Check the status of the ESS request. When the

data uploads:

 Successfully, the execution status is SUCCEEDED.

 Fails, the execution status is ERROR.

Operation: getEssJobStatus

The getEssJobStatus operation obtains the execution status of the submitted ESS job. This operation requires

application user access.

The following table lists the parameters for this operation:

Parameter
Name

Description Parameter
(In/Out)

Mandatory Type

requestID The request ID of the ESS job. IN Yes java.lang.Long

return Returns the current status of the ESS job.

For complete list of the job statuses and description,
see Appendix 4: ESS Job Execution Status.

OUT java.lang.String

The following sample payload illustrates the Journal Import process:

59 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <ns1:getESSJobStatus

xmlns:ns1="http://xmlns.oracle.com/apps/financials/commonModules/shared/erpIntegrationService/types/">

 <ns1:requestId>35961</ns1:requestId>

 </ns1:getESSJobStatus>

 </soap:Body>

</soap:Envelope>

Figure 29: Sample payload for the Journal Import process

6. Prepare the payload to import the journals from the interface table to GL_JE_HEADERS and GL_JE_LINES using

the Journal Import ESS process.

To map the ESS parameters to the payload parameters:

i. Navigate to the Scheduled Processes page.

ii. Click the Schedule New Process button.

iii. Find and select the Import Journals process.

iv. Submit the process by entering the required parameters.

v. Go to the Process Monitor and select the submitted process.

vi. In the Details region, expand the Parameters node. Review the ordered list of arguments and their

values, and find the arguments IDs that are passed internally.

The payload input parameters for the submitESSJobRequest operation of ERP Integration Service are as follows:

Payload Parameter Name Value Comments

jobPackageName /oracle/apps/ess/financials/generalLedge
r/programs/common

jobDefinitionName JournalImportLauncher

paramList 1061 Data access set identifier

paramList Expenses Source

paramList 1 Ledger identifier

paramList ALL Group identifier

paramList N Post account errors to suspense
account

paramList N Create summary journals

paramList N Import descriptive flexfields

60 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Use the service tester to call the web service with the payload. Check the response for the status of the ESS job

request.

7. Prepare the payload to verify the status of the request.

The following table lists the payload input parameters for the getEssJobStatus operation of the ERP Integration

Service:

Payload Parameter Name Value Comments

requestID <372750> The request identifier for the ESS process.

Use the service tester to call the web service with the payload. Check the response for the status of the ESS

request.

8. Prepare the payload to retrieve the log or output file associated with the request.

The following table lists the payload input parameters for the downloadESSJobExecutionDetails operation of the

ERP Integration Service:

Payload Parameter Name Value Comments

requestID <372750> The request identifier for the ESS process.

Use the service tester to call the web service with the payload. Check the response payload for this ESS request.

Response Payload

Run the Base64 decode sample program to convert the Content value from the response payload to 212913.zip file. For the

sample program, see Appendix 2: Sample Code for Preparing a Data File for Inbound and Outbound Flow.

<env:Body xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

wsu:Id="Body-M3Y1Wo0PrQ91vGVfDENtkQ22">

 <ns0:downloadESSJobExecutionDetailsResponse

xmlns:ns0="http://xmlns.oracle.com/apps/financials/commonModules/shared/ErpIntegrationService/types/">

 <ns2:result xmlns:ns0="http://xmlns.oracle.com/adf/svc/types/"

xmlns:ns1="http://xmlns.oracle.com/apps/financials/commonModules/shared/ErpIntegrationService/"

xmlns:ns2="http://xmlns.oracle.com/apps/financials/commonModules/shared/ErpIntegrationService/types/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="ns1:DocumentDetails">

 <ns1:Content>UEsDBBQACAAIAPK68UQAAAAAAAAAAAAAAAAKAAAAMjEyOTEzLmxvZz3PwYrDIBCA4btPMQ8gOJoa

6N5CY6CnDd28gCSTRTCa6gS6b99Syl6/ww8/PWg+mL5+pu42iZ4qh+Q55ARDiAR9KDRzLn+gasys

aKtnja3y+779FtWN4/Q9qpAq+zSTolpVWRdltDlro/LB4kb341WFaw9vbf7lkhPTgz8sYfWxkoR0

xChhcK3u0Wrd2guesHF4aixaHBA761onQRsJBo2Yik91pfLqbXskpkXQZ8qlRTwBUEsHCNkrs2Wz

AAAA4QAAAFBLAQIUABQACAAIAPK68UTZK7NlswAAAOEAAAAKAAAAAAAAAAAAAAAAAAAAAAAyMTI5

MTMubG9nUEsFBgAAAAABAAEAOAAAAOsAAAAAAA==</ns1:Content>

 <ns1:FileName xsi:nil="true"/>

 <ns1:ContentType>zip</ns1:ContentType>

 <ns1:DocumentTitle>ESS_L_212913</ns1:DocumentTitle>

 <ns1:DocumentAuthor>FIN_USER1</ns1:DocumentAuthor>

 <ns1:DocumentSecurityGroup>Attachments</ns1:DocumentSecurityGroup>

 <ns1:DocumentAccount xsi:nil="true"/>

 <ns1:DocumentName>212913.zip</ns1:DocumentName>

 </ns2:result>

 </ns0:downloadESSJobExecutionDetailsResponse>

 </env:Body>

61 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Figure 30: Response payload for the downloadESSJobExecutionDetails operation

62 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Appendix 10: Manage Outbound Flow Automation Steps with Separate Web Service
Operations

This section describes an alternate way to automate outbound data integration using individual web service operation. The

Extract Receivables Transactions flow illustrates the outbound data integration flow with Oracle ERP Cloud. In this example,

a batch of transactions are extracted from the system and sent to the customers. The transactions are extracted in the

output file of the Print Receivables Transaction ESS process.

Use the following operations to control the orchestration of the outbound flow:

1. submitESSJobRequest

2. getEssJobStatus

3. downloadESSJobExecutionDetails

Flow Steps Details

1. Prepare the payload to call the Print Receivables Transactions ESS process.

To map the ESS parameters and the values for preparing the payload, see Step 5 in the inbound flow example.

The payload input parameters for the submitESSJobRequest operation are as follows:

Payload Parameter Name Value Comments

jobPackageName oracle/apps/ess/financials/receivables/

transactions/shared

jobDefinitionName PrintReceivablesTransaction

paramList 204 Business Unit Identifier

paramList NEW Transactions to Print

paramList TRX_NUMBER Order By

paramList #NULL Batch Name

paramList #NULL Transaction Class

paramList #NULL Transaction Type

paramList #NULL Customer Class

paramList #NULL From Customer

paramList #NULL To Customer

paramList #NULL From Customer Account Number

paramList #NULL To Customer Account Number

paramList #NULL From Transaction Number

paramList #NULL To Transaction Number

paramList #NULL Installment Number

paramList #NULL From Print Date

63 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

paramList #NULL To Print Date

paramList #NULL Open Invoices Only

paramList Default Invoice Template Invoice Template Name

paramList Default Credit Memo Template Credit Memo Template Name

paramList Default Debit Memo Template Debit Memo Template Name

paramList Default Chargeback Template Chargeback Template Name

paramList No Itemized Tax by Line

Important

You must pass “#NULL” in the payload for the null value in the request payload.

Use the service tester to call the web service with the payload. Check the response for the request ID of the ESS

process.

2. Prepare the payload to verify the status of the request.

The following table lists the payload input parameter for the getEssJobStatus operation of the ERP Integration
Service:

Payload Parameter Name Value Comments

requestID <372750> The request identifier for the ESS process.

Use the service tester to call the web service with the payload. Check the response for the status of the ESS

request.

Operation: getEssJobStatus

The getEssJobStatus method obtains the execution status of the ESS job. This operation requires application user

access.

The following table lists the parameters for this operation:

Parameter
Name

Description Parameter
(In/Out)

Mandatory Type

requestID The request ID of the ESS job. IN Yes java.lang.Long

return Returns the current status of the ESS job.

For a complete list of job statuses and descriptions, see
Appendix 4: ESS Job Execution Status.

OUT java.lang.String

64 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

The following sample payload illustrates the Journal Import process:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <ns1:getESSJobStatus

xmlns:ns1="http://xmlns.oracle.com/apps/financials/commonModules/shared/erpIntegrationService/types/">

 <ns1:requestId>35961</ns1:requestId>

 </ns1:getESSJobStatus>

 </soap:Body>

</soap:Envelope>

Figure 31: Sample payload for the Journal Import process

3. Prepare the payload to retrieve the log file or the output file associated with the request.

The following table lists the payload input parameter for the downloadESSJobExecutionDetails operation of the

ERP Integration Service:

Payload Parameter Name Value Comments

requestID <372750> The request identifier for the ESS process.

Use the service tester to call the web service with the payload. Check the response for the log or output file associated with

the ESS request. For more information on preparing the log or output file using the output from the response payload, see

Appendix 2: Sample Code for Preparing a Data File for Inbound and Outbound Flow.

65 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Appendix 11: Creating a Callback Web Service

In practice, customers will create and host a callback web service to optimally leverage the callback capabilities provided by

Oracle ERP Integration Service for notification purposes. The customer callback web service must implement the

onJobCompletion() operation. When a job completes, Oracle ERP Integration Service invokes the customer callback web

service as defined in the request payload of supported operations with callback capabilities, such as the importBulkData

operation.

Note

The customer callback web service triggers when the last job in the payload is executed, irrespective of whether the job

completes successfully or fails.

Sample Callback Response

{
 "JOBS":
 [
 {"JOBNAME":"Load Interface File for Import",
 "JOBPATH":"/oracle/apps/ess/financials/commonModules/shared/common/interfaceLoader",
 "DOCUMENTNAME":"apinvoiceimport.zip",
 "REQUESTID":"2529",
 "STATUS":"SUCCEEDED",
 "CHILD":[
 {"JOBNAME":"Transfer File",
 "JOBPATH":"/oracle/apps/ess/financials/commonModules/shared/common/interfaceLoader",
 "REQUESTID":"2530",
 "STATUS":"SUCCEEDED"},
 {"JOBNAME":"Load File to Interface",
 "JOBPATH":"/oracle/apps/ess/financials/commonModules/shared/common/interfaceLoader",
 "REQUESTID":"2531",
 "STATUS":"SUCCEEDED"}
]
 },
 {"JOBNAME":"Import Invoices",
 "JOBPATH":"/oracle/apps/ess/financials/payables/invoices/transactions",
 "REQUESTID":"2532",
 "STATUS":"SUCCEEDED",
 "CHILD":[
 {"JOBNAME":"Import Invoices Report",
 "JOBPATH":"/oracle/apps/ess/financials/payables/invoices/transactions",
 "REQUESTID":"2533",
 "STATUS":"SUCCEEDED"}
]
 }

],
 "SUMMARYSTATUS":"SUCCEEDED"

}

Figure 32: Sample callback response

https://confluence.oraclecorp.com/confluence/display/FFT/ERP+Integration+Service#ERPIntegrationService-Operation:loadAndImportData

66 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Callback Service Implementation Sample Code

67 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

 The following example illustrates a sample Java code for retrieving the details from the response payload:

68 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

public void onJobCompletion(OnJobCompletion params) {

 String strPayload = null;

 strPayload = params.getResultMessage();

 JSONObject jsonResponse = new JSONObject(strPayload);

 String xmlStr = XML.toString(jsonResponse);

 // Use the xml parser api to retrieve the value of the node

try {

 DocumentBuilderFactory dbFactory = DocumentBuilderFactory.newInstance();

 DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();

 InputSource is = new InputSource();

 is.setCharacterStream(new StringReader(xmlStr));

 Document doc = dBuilder.parse(is);

 System.out.println("Root element :" + doc.getDocumentElement().getNodeName());

 if (doc.hasChildNodes()) {

 NodeList nodeList = doc.getChildNodes();

 for (int count = 0; count < nodeList.getLength(); count++) {

 Node tempNode = nodeList.item(count);

 if (tempNode.getNodeType() == Node.ELEMENT_NODE) {

 if (tempNode.getNodeName().equals("DOCUMENTID")) {

 System.out.println("DOCUMENTID: " + tempNode.getTextContent());

 }

 if (tempNode.getNodeName().equals("SUMMARYSTATUS")) {

 System.out.println("SUMMARYSTATUS: " + tempNode.getTextContent());

 }

 if (tempNode.getNodeName().equals("JOBS") && tempNode.hasChildNodes()) {

 NodeList jobList = doc.getChildNodes();

 for (int c = 0; c < jobList.getLength(); c++) {

 Node job = jobList.item(c);

 printJobDetails(job);

69 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

 //printing child

 if (job.hasChildNodes()) {

 NodeList nodeList2 = job.getChildNodes();

 for (int count2 = 0; count2 < nodeList2.getLength(); count2++) {

 Node tempNode2 = nodeList2.item(count2);

 if (tempNode2.getNodeType() == Node.ELEMENT_NODE &&

tempNode2.hasChildNodes()) {

 NodeList nodeList3 = tempNode2.getChildNodes();

 for (int count3 = 0; count3 < nodeList3.getLength(); count3++) {

 printJobDetails(nodeList3.item(count3););

 }

 }

 }

 }

 }

 }

 }

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

}

private void printJobDetails(Node job) {

 if (job.hasChildNodes()) {

 NodeList nodeList = job.getChildNodes();

 for (int count = 0; count < nodeList.getLength(); count++) {

 Node tempNode = nodeList.item(count);

 if (tempNode.getNodeType() == Node.ELEMENT_NODE && !tempNode.hasChildNodes()) {

 if (tempNode.getNodeName().equals("JOBNAME")) {

 System.out.println("JOBNAME: " + tempNode.getTextContent());

70 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

 }

 if (tempNode.getNodeName().equals("JOBPATH")) {

 System.out.println("JOBPATH: " + tempNode.getTextContent());

 }

 if (tempNode.getNodeName().equals("STATUS")) {

 System.out.println("STATUS : " + tempNode.getTextContent());

 }

 if (tempNode.getNodeName().equals("REQUESTID")) {

 System.out.println("REQUESTID: " + tempNode.getTextContent());

 }

 if (tempNode.getNodeName().equals("DOCUMENTNAME")) {

 System.out.println("DOCUMENTNAME: " + tempNode.getTextContent());

 }

 }

 }

 }

}

Figure 33: Sample code for the callback service

Callback Web Service Security

If you have enabled SSL in your callback service, Oracle ERP Cloud must have your SSL certificate imported in the

respective keystore to successfully invoke the callback endpoint URL using HTTPS protocol.

Open Oracle Support Service Request (SR) to initiate the request in your pod. This is a one-time configuration.

PaaS or On-Premise Security Configuration

Oracle ERP cloud implements Oracle Web Service Manager (OWSM) to secure web services. The security policy for

callback is: oracle/wss_saml_token_bearer_client_polic. This mandates that the callback web service in your PaaS or on-

premise implementation must be secured through compatible OWSM server policy:

oracle/wss_saml_bearer_or_username_token_service_policy.

This is a sample SAML assertion from Oracle ERP Cloud when invoking the callback service:

<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd" env:mustUnderstand="1">

71 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

 <saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion" MajorVersion="1" MinorVersion="1" AssertionID="SAML-

fCdgV0BqwQDU97xq6frjRw22" IssueInstant="2016-05-24T01:06:22Z" Issuer="www.oracle.com">

 <saml:Conditions NotBefore="2016-05-24T01:06:22Z" NotOnOrAfter="2016-05-24T01:11:22Z"/>

 <saml:AuthenticationStatement AuthenticationInstant="2016-05-24T01:06:22Z"

AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">

 <saml:Subject>

 <saml:NameIdentifier Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified">FINUSER1</saml:NameIdentifier>

 <saml:SubjectConfirmation>

 <saml:ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:bearer</saml:ConfirmationMethod>

 </saml:SubjectConfirmation>

 </saml:Subject>

 </saml:AuthenticationStatement>

 <dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">

 <dsig:SignedInfo>

 <dsig:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <dsig:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <dsig:Reference URI="#SAML-fCdgV0BqwQDU97xq6frjRw22">

 <dsig:Transforms>

 <dsig:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

 <dsig:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 </dsig:Transforms>

 <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <dsig:DigestValue>IqAsJkAm490B8xQLk3+ztDPLggw=</dsig:DigestValue>

 </dsig:Reference>

 </dsig:SignedInfo>

<dsig:SignatureValue>DqM35PHNh4RKvWiZ/QOBYieWl0a9sKk0eFYSISL2NRqK7gLNdH8mTUT3HlBl282b3FsJrEgK25cuV1f2suquyEzOeGUQTd71hue

W4xbXg5bjUNAQ+RXjdP3TUr8wy9+Ftv1s2tobZSXyfpxmHDDcsgOEP2MltkItjLKRyCDlHTrqUxBJDW+g5KvwgNhjadA/1ShlBeyA4uv2X3uxa/IyDGr5h82P

6v+jUIXtnDjZW0lDphdjZOXx+y943tYPx8SYDaIaf20lb19lHI10nwm76nzo7gU/MAxS2d5uf1YsbH15NN2tD7amwpSznRTt8OgTwgru27XcFVQ+0FGjA4O2

6Q==</dsig:SignatureValue> <dsig:KeyInfo>

 <dsig:X509Data>

<dsig:X509Certificate>MIIDbDCCAlSgAwIBAgIGAVL8VT1fMA0GCSqGSIb3DQEBCwUAMHgxCzAJBgNVBAYTAlVTMRAwDgYDVQQIEwdNeVN0YXRlMQ8

wDQYDVQQHEwZNeVRvd24xFzAVBgNVBAoTDk15T3JnYW5pemF0aW9uMRkwFwYDVQQLExBGT1IgVEVTVElORyBPTkxZMRIwEAYDVQQDEwlDZXJ0R

72 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

2VuQ0EwHhcNMTYwMjIwMDEzOTUwWhcNMjEwMjE4MDEzOTUwWjBTMRMwEQYKCZImiZPyLGQBGRYDY29tMRYwFAYKCZImiZPyLGQBGRYGb3JhY

2xlMRIwEAYKCK8tzPmS9ielPXDmLnIlaF+NvYf2YsQzurFxkzJ37PPeOpImr5bj83gyTKzsnRLETN6j1cQUtCARa+QPuBYw9c2Y4gkoFSyKBS3nRG5ulJmFafoB

3SBBfX93126V7rZBjZ8QrzsZhATTZQijs2a7s/X2hNTuGheIWqyerlUrek5PErkPY7eYFijmwn5pcSokUV10Py6dxw+A==</dsig:X509Certificate>

 <dsig:X509IssuerSerial>

 <dsig:X509IssuerName>CN=CertGenCA, OU=FOR TESTING ONLY, O=MyOrganization, L=MyTown, ST=MyState,

C=US</dsig:X509IssuerName>

 <dsig:X509SerialNumber>1455932390751</dsig:X509SerialNumber>

 </dsig:X509IssuerSerial>

 <dsig:X509SubjectName>CN=service, DC=us, DC=oracle, DC=com</dsig:X509SubjectName>

 <dsig:X509SKI>kFgAwGeiKu8lIiJe62UKOE2V0X8=</dsig:X509SKI>

 </dsig:X509Data>

 </dsig:KeyInfo>

 </dsig:Signature>

 </saml:Assertion>

Figure 34: Sample SAML assertion of the callback service

These are the sample steps in Weblogic to receive callback from the Oracle ERP Cloud:

1. The Weblogic instance must support issuer www.oracle.com and the LDAP directory must have the

saml:NameIdentifier username. In this sample, it is FINUSER1.

2. The SAML assertion must also contain a digital signature that must be imported in the Weblogic OWSM keystore.

73 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Appendix 12: Creating a Job Property File for the importBulkData Operation

You can generate the job property file for each job to further simplify the request payload of the importBulkData operation.

Generating Job Properties

The job properties file must be in CSV format. These are the following columns in the proper order:

1. Job package name

2. Job definition name

3. Inbound ZIP data file prefix name

4. ESS parameters (or arguments) – could be none or many as defined by job name

To get the job package and definition name, see Viewing Details about Predefined Scheduled Processes in the File-Based

Data Import for Oracle Financials Cloud guide in the Oracle Help Center at http://docs.oracle.com.

This is an example of a journal import where the ZIP data file name is: my_journal_import_123456.zip.

/oracle/apps/ess/financials/generalLedger/programs/common,JournalImportLauncher,my_journal_import,#NULL,#NULL,Bal

ance Transfer,#NULL,1,#NULL,N,N,N

The file name could be any name, but the extension must be “.properties”.

Delivering Job Property File

Once the job property file is generated for the respective job, it can be bundled with the ZIP file that contains the data file(s).

The job property file must have the extension “.properties”.

You can reuse the same job property file for similar imports by uploading the file to the respective UCM account from the

Oracle Fusion Applications UI, or using the uploadFileToUcm operation.

Reusing the Job Property File Naming Convention from the UCM Account

The job property file name must be defined with respective to ZIP file name. For example:

ZIP file name is “SS_GL_ERP_<SEQUENCE or TIMESTAMP>.zip

The parameter file name must be “SS_GL_ERP.properties”.

Reusing the Job Property File – Custom Name from the UCM Account

A parameter file with a custom name can be uploaded to the respective UCM account. To reuse the parameter file, you must

provide the file name in the request payload as follows:

<ns1:jobOptions> JobDetailFileName=<fileName.properties></ns1:jobOptions>

http://docs.oracle.com/cloud/latest/financialscs_gs/OEFBF/Viewing_Details_About_Predefined_Scheduled_Processes_Procedure.htm#ViewingDetailsAboutPredefinedSchedu-EFCAE12E

74 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Appendix 13: Manual Inbound (Import) Steps

Transferring Data Files to Oracle WebCenter Content Server

After you generate the ZIP file that contains the CSV data import file, transfer the ZIP file to the Oracle WebCenter Content

Server.

Use any of the following methods to transfer the file:

 File Import and Export page in Oracle Fusion Applications: Manual flow

 Oracle WebCenter Content Server home page

File Import and Export

Use the File Import and Export page to access the WebCenter Content Repository. For example, each Oracle ERP Cloud

instance connects to a single Oracle WebCenter Content server for content management.

For more information about the use and administration of content management, see:

 Oracle WebCenter Content Server User's Guide

 Oracle WebCenter Content Server System Administrator's Guide

References for Using Content Management

The File-Based Data Import guides in the Oracle Help Center (http://docs.oracle.com) provide the objects to upload and

download, including templates for external data integration. For general access to content management, including the

metadata and manage accounts, use the Oracle WebCenter Content Server's standard service user interface.

The following table provides additional resources for more information:

Topic Resource

Content server Oracle WebCenter Content User's Guide for Content Server

Creating WebCenter content accounts Oracle WebCenter Content System Administrator's Guide for
Content Server

Naming accounts used in import and export processes Files for Import and Export section

Programmatic upload and download to content management Oracle WebCenter Content System Administrator's Guide for
Content Server

Roles Oracle Fusion Applications Common Security Reference Manual

Managing Files for Import and Export

75 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Import data or export data out of Oracle ERP Cloud using content and processes repositories. Integration specialists stage

data for import and export. Application administrators run processes to import data in the content repositories to the

application transaction tables or retrieve data exported from the applications.

Managing files for import and export involve the following:

 Using the File Import and Export page

 Interacting with the content management server

Using the File Import and Export Page

The File Import and Export page enables you to upload or download content from the document repository of Oracle

WebCenter Content Management. The search criteria section is limited to the minimum metadata of content management

records needed for file import and export.

To access the File Import and Export page:

1. From the Navigator, click Tools.

2. Click File Import and Export.

The maximum file size using the File Import and Export page is 2 GB.

Interacting with Content Management

When you use the File Import and Export page, you are assigned one or more accounts in the content management server.

These accounts organize and secure access to the content items.

Interaction between the File Import and Export page and Oracle WebCenter Content server requires securing content in an

account. Oracle provides predefined accounts in the Oracle WebCenter Content server.

File import and export include the following concepts:

 Security

 Searching records

 Accessing content in a new account

 Account names

 Deleting files

 Uploading for import

 Downloading for export

 File size

Security

76 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Use the File Import and Export Management duty role to access the File Import and Export page. This duty role is included

in the predefined role hierarchy for integration specialist roles and product family administrator roles.

The files in Oracle WebCenter Content Management server are associated with an account. The users who have the access

privileges to a specific account can work with content items that belong to that account.

Note

You can only upload and download files to and from the content management server that is associated with the

accounts that you are entitled to access.

The Oracle WebCenter Content Management server does not support trailing slashes (/) as part of the account name.

Account names are appended with a dollar sign ($) to ensure each account is unique. Account names are dynamic so that if

they overlap (one name is completely contained in another, longer name, such as the US and US Sales), each account is

considered as discrete by access grants. Security such as virus scanning is handled by the underlying integrated content

management.

Searching Records

A record in the Oracle WebCenter Content Management server contains metadata used to access the file. When you run a

scheduled process to completion on a file, the record for the file includes a process ID.

Accessing Content in a New Account

When you create a new account in the Oracle WebCenter Content Management server and the content server is not

restarted, the access to the content in the new account from the File Import and Export page is delayed until the policy store

is updated.

Account Names

If you create custom accounts for importing or exporting data, use the following naming conventions for the account:

 To avoid partial string matching, do not include a slash (/) at the beginning or use a dollar sign ($) at the end.

 Use a dollar sign and slash ($/) as a separator in the hierarchical structure.

77 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

The File Import and Export page transforms account names by removing the dollar signs ($). For example,

fin$/journal$/import$ displays as fin/journal/import.

The Remote Intradoc Client (RIDC) HTTP Command-Line Interface (CLI) transforms the account name you specify without

the dollar signs ($) to one that includes them. For example, fin/journal/import becomes fin$/journal$/import$ in the Oracle

WebCenter Content Management server.

You must transfer files to these predefined accounts in content management that correspond to the interface table or assets

of interest. For a list of the target accounts in each interface table, see Appendix 3: Predefined Target UCM Accounts.

Deleting Files

You can delete one file at a time in the File Import and Export page. To delete multiple files simultaneously from the content

repository, use the standard service page in the Oracle WebCenter Content Management server.

Uploading for Import

To create a record, you must specify an account and the file. The account you specify determines which import process is

used.

You can upload any file formats that can be parsed by the content repository, such as any MIME or content types. However,

the format uploaded must conform to the requirements of the import process, such as a CSV file for the Load Interface File

for Import process.

Downloading for Export

The export data processes create files in the content management server. Records in the search results table of the File

Import and Export page provide links to the files for download.

Load Interface File for Import Process

The Load Interface File for Import process loads external setup or transaction data from the data file on the content

management server to the relevant product interface table(s). You can run this process from the Scheduled Processes page

on a recurring basis as needed.

Before running this process, you must:

1. Prepare your data file.

2. Transfer the data file to the content management server.

The following table describes the parameters for this process:

Parameter Description

Import Process Select the target import process.

Data File Choose the data file from the choice list.

78 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Importing Data

The final destination for your external data is the product application data table(s) of your Oracle ERP Cloud application.

Importing data into the application tables involves the following:

 Loading data into the product interface table(s)

 Finding and submitting the applicable import process

Loading Data into Interface Tables

Interface tables are intermediary tables that store your data temporarily while the application validates format and structure.

Run the Load Interface File for Import scheduled process to load data from the data file into the interface table that

corresponds to the template that you use to prepare the data.

To load your data into interface tables, submit the Load Interface File for Import scheduled process using the following

steps:

1. From the Navigator, click Tools.

2. Click Scheduled Processes.

3. Click the Schedule New Process button.

4. Search and select the Load Interface File for Import job.

5. On the Process Details page:

i. Select the target import process.

ii. Enter the data file name.

6. Submit the process.

If the process is successful, the status is SUCCEEDED and the process populates the interface tables. If the process isn’t

successful, the status is ERROR. For more information on correcting load errors, see the Correcting Load Process Errors

The Load Interface File for Import process ends in error when the load of the data file fails for any individual row. The Load

File to Interface child process ends as an error or warning. All rows that were loaded by the process are deleted and the

entire batch of records is rejected.

79 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Correcting Interface Data Errors

To correct errors:

6. Review the upload error logs.

7. Change any structural or formatting anomalies in the data.

8. Generate the ZIP file containing the CSV files using the respective import template.

9. Upload the corrected file to the UCM server and resubmit the Load Interface File for Import process.

10. Repeat these steps until the process successfully loads all the data.

80 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Correcting Import Process Errors

If the import process fails with errors:

3. Review the errors in the import log.

4. Correct the error records using the applicable ADFdi correction spreadsheets.

For a list of import processes and their corresponding ADFdi correction spreadsheets, see Appendix 7: Error Handling for

Import Jobs.

If auto purge is enabled in your import process, then you cannot use ADFdi. Use these steps:

4. Download the purge erroneous ZIP file from the File Import and Export page.

5. Select the erroneous data records from the interface file and correct them.

6. Follow the FBDI process to resubmit the corrected data.

81 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Purging Interface and Error Tables

Data from the interface and error tables can be purged as part of the following processes:

3. Each File-Based Data Import (FBDI) process initiates a purge process by default. Following the completion of

the import process, the erroneous data to be purged will first be extracted and uploaded to the Oracle

WebCenter Content Server (UCM).

4. Customers also have the capability to manage the purge process directly from the Scheduled Processes page

by launching the Purge Interface Tables process as needed. This process supports the purge of interface data

created from either FBDI or non-FBDI sources.

The purge backup file is stored and associated with the respective UCM import account for reference where needed. The file

can either be downloaded using the Oracle ERP Integration Service or the File Import and Export page. This file is a

consolidated ZIP file that contains the individual interface and error data files in a comma separated values (CSV) format.

For data correction, select and revise any erroneous data from the respective interface spreadsheet file, then upload the

revised interface file again to execute the FBDI process.

For the processes outlined above, the existing inbound, outbound, and erroneous data files older than 30 days that are

stored on the UCM server will automatically be purged for the applicable UCM account.

Operation: extractAndPurge

The extractAndPurge operation extracts data from the interface and error tables, uploads the relevant data file to UCM, then

purges the respective data.

The purge file naming convention is as follows: ImportBulkData_<ImportJobName>_<LoadRequestId>.zip

The following table lists the parameters for this operation:

Parameter
Name

Description Parameter
(In/Out)

Mandatory Type

Request IDs The request ID(s) of load jobs. IN Yes java.lang.String

Notification
Code

A two-digit number that determines how and when a notification
is passed for the status of the import job. See the table below
for the notification code values.

IN Yes java.lang.String

Callback URL The callback URL of the web service you implemented to
receive the ESS job status upon job completion.

IN No java.lang.String

Job Options There are no additional job options for this operation. IN No java.lang.String

The following table provides information on the notification codes:

Digit Position Digit Value Meaning

First digit 1 E-mail notification

2 Bell notification

3 Email and bell notification

Second digit 0 Send in any case (import failed or succeeded)

1 Send on import success

2 Send on import failure

82 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

The following sample request payload illustrates the extractAndPurge process:

<soap:Body>

 <ns1:extractAndPurge

xmlns:ns1="http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/types/"

>

 <ns1:requestIds>1234;1235;1236</ns1:requestIds>

 <ns1:notificationCode>30</ns1:notificationCode>

 <ns1:callbackURL>#NULL</ns1:callbackURL>

 <ns1:jobOptions></ns1:jobOptions>

</ns1:extractAndPurge>

</soap:Body>

Figure 11: Sample request payload for the extractAndPurge operation

To manage the purge process directly from the Scheduled Processes page by launching the Purge Interface Tables process

as needed, see Appendix 17: Purge - UI Based Approach.

 section.

Note

The data file remains in the content repository after the process ends.

Finding and Submitting the Import Process

83 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

To import your data into the application tables:

1. From the Navigator, click Tools.

2. Click Scheduled Processes.

3. Click the Schedule New Process button.

4. Search and select the import process for the target application tables.

5. On the Process Details page, select the process that corresponds to the data that you’re importing. For example,

Journal Import. If you prepared your data using the spreadsheet template, select the process shown in the

Overview section of the spreadsheet.

6. Submit the process.

If the process is successful, the status is SUCCEEDED. The data in the interface tables is validated and the successful

records are imported into the relevant Oracle ERP Cloud main application table(s). If the process isn’t successful, the status

is ERROR. For more information on correcting import errors, see the Correcting Load Process Errors

The Load Interface File for Import process ends in error when the load of the data file fails for any individual row. The Load

File to Interface child process ends as an error or warning. All rows that were loaded by the process are deleted and the

entire batch of records is rejected.

Correcting Interface Data Errors

To correct errors:

11. Review the upload error logs.

12. Change any structural or formatting anomalies in the data.

13. Generate the ZIP file containing the CSV files using the respective import template.

14. Upload the corrected file to the UCM server and resubmit the Load Interface File for Import process.

15. Repeat these steps until the process successfully loads all the data.

Correcting Import Process Errors

84 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

If the import process fails with errors:

5. Review the errors in the import log.

6. Correct the error records using the applicable ADFdi correction spreadsheets.

For a list of import processes and their corresponding ADFdi correction spreadsheets, see Appendix 7: Error Handling for

Import Jobs.

If auto purge is enabled in your import process, then you cannot use ADFdi. Use these steps:

7. Download the purge erroneous ZIP file from the File Import and Export page.

8. Select the erroneous data records from the interface file and correct them.

9. Follow the FBDI process to resubmit the corrected data.

85 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Purging Interface and Error Tables

Data from the interface and error tables can be purged as part of the following processes:

5. Each File-Based Data Import (FBDI) process initiates a purge process by default. Following the completion of

the import process, the erroneous data to be purged will first be extracted and uploaded to the Oracle

WebCenter Content Server (UCM).

6. Customers also have the capability to manage the purge process directly from the Scheduled Processes page

by launching the Purge Interface Tables process as needed. This process supports the purge of interface data

created from either FBDI or non-FBDI sources.

The purge backup file is stored and associated with the respective UCM import account for reference where needed. The file

can either be downloaded using the Oracle ERP Integration Service or the File Import and Export page. This file is a

consolidated ZIP file that contains the individual interface and error data files in a comma separated values (CSV) format.

For data correction, select and revise any erroneous data from the respective interface spreadsheet file, then upload the

revised interface file again to execute the FBDI process.

For the processes outlined above, the existing inbound, outbound, and erroneous data files older than 30 days that are

stored on the UCM server will automatically be purged for the applicable UCM account.

Operation: extractAndPurge

The extractAndPurge operation extracts data from the interface and error tables, uploads the relevant data file to UCM, then

purges the respective data.

The purge file naming convention is as follows: ImportBulkData_<ImportJobName>_<LoadRequestId>.zip

The following table lists the parameters for this operation:

Parameter
Name

Description Parameter
(In/Out)

Mandatory Type

Request IDs The request ID(s) of load jobs. IN Yes java.lang.String

Notification
Code

A two-digit number that determines how and when a notification
is passed for the status of the import job. See the table below
for the notification code values.

IN Yes java.lang.String

Callback URL The callback URL of the web service you implemented to
receive the ESS job status upon job completion.

IN No java.lang.String

Job Options There are no additional job options for this operation. IN No java.lang.String

The following table provides information on the notification codes:

Digit Position Digit Value Meaning

First digit 1 E-mail notification

2 Bell notification

3 Email and bell notification

Second digit 0 Send in any case (import failed or succeeded)

1 Send on import success

2 Send on import failure

86 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

The following sample request payload illustrates the extractAndPurge process:

<soap:Body>

 <ns1:extractAndPurge

xmlns:ns1="http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/types/"

>

 <ns1:requestIds>1234;1235;1236</ns1:requestIds>

 <ns1:notificationCode>30</ns1:notificationCode>

 <ns1:callbackURL>#NULL</ns1:callbackURL>

 <ns1:jobOptions></ns1:jobOptions>

</ns1:extractAndPurge>

</soap:Body>

Figure 11: Sample request payload for the extractAndPurge operation

To manage the purge process directly from the Scheduled Processes page by launching the Purge Interface Tables process

as needed, see Appendix 17: Purge - UI Based Approach.

 section.

Note

For more information on the process used for data prepared using the spreadsheet template, see the Instructions and

CSV Generation tab of the spreadsheet template.

87 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Appendix 14: Managing PGP Encryption Keys

Managing PGP Certificates

Certificates establish keys for the encryption and decryption of data that Oracle Cloud applications exchange with other

applications. The Oracle Fusion Applications Security Console is an easy-to-use administrative interface that you access by

selecting Tools → Security Console on the home page or from the Navigator. Use the Certificates page in the Security

Console functional area to work with PGP certificates.

A PGP certificate consists of a public key and a private key. The Certificates page displays one record for each certificate.

Each record reports these values:

 Type: For a PGP certificate, Public Key is the only type.

 Private Key: A check mark indicates that the certificate's private key is present. For either certificate format, the

private key is present for your own certificates (those you generate in the Security Console). The private key is

absent when a certificate belongs to an external source and you import it via the Security Console.

 Status: For a PGP certificate, the only value is Not Applicable. (A PGP certificate has no status.)

 For each certificate, click the button at the end of the row to display a menu of actions appropriate for the

certificate. Alternatively, to view details for a certificate, select its name ("alias"). Actions include:

o Generating certificates

o Importing and exporting PGP certificates

o Deleting certificates

Generating Certificates

For a PGP certificate, one operation creates both the public and private keys. From the Certificates page, select the

Generate option. In the Generate page, select the certificate format PGP, and enter values appropriate for the format.

For a PGP certificate, these values include:

 An alias (name) and passphrase to identify the certificate uniquely.

 The algorithm by which the keys are generated, DSA or RSA.

 A key length – select 1024.

88 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Figure 35: Security Console Certificates main page

Figure 36: PGP Generate Certificates dialog window

Importing and Exporting PGP Certificates

For a PGP certificate, you export the public and private keys in separate operations. You can import only public keys. The

assumption is that you will import keys from external sources, which will not provide their private keys to you.

To export an Oracle Fusion public key:

1. From the Certificates page, select the menu in the row of the certificate that you want to export. Alternatively, open

the details page for that certificate and select its Actions menu.

2. In either menu, select Export, then Public Key or Private Key.

3. If you selected Private Key, provide its passphrase. (The public key does not require one.)

4. Select a location for the export file. By default, this file is called [alias]_pub.asc or [alias]_priv.asc

To import a Customer’s PGP public key:

1. On the Certificates page, click the Import button.

2. In the Import page, select PGP and specify an alias (which does not need to match the alias of the file you are

importing).

3. Browse for the public key file, and then select Import and Close.

The Certificates page displays a record for the imported certificate, with the Private Key cell unchecked.

89 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Figure 37: PGP Import Certificate page

Deleting Certificates

You can delete PGP certificates.

In the Certificates page, select the menu in the row of the certificate that you want to delete. Alternatively, select the Actions

menu in the details page for that certificate. In either menu, select Delete, then review and accept the resulting warning

message as appropriate.

90 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Appendix 15: How to Encrypt and Decrypt a Data File

Encrypt an Inbound Data File from your Linux On-Premise System

In Linux, you can use “gpg” to encrypt a data file. After PGP keys are generated, you must import the Oracle ERP Cloud

public key as follows:

gpg --import <MY_ERP_KEY_pub.asc>

###Verify the imported key using this command

gpg --list-keys

Figure 38: Sample command to import PGP public key

Once the public key is imported, use the following command to encrypt your inbound data file:

gpg --cipher-algo=AES -r=<alias> --encrypt <my_data_file>.zip

Figure 39: Sample command to encrypt ZIP file

The encrypted file will be renamed as <my_data_file>.zip.gpg.

Decrypt an Outbound Oracle ERP Cloud Data File in your Linux On-Premise System

To decrypt an outbound Oracle ERP Cloud data file, you must first import a customer’s private key as follows:

gpg --allow-secret-key-import --import <my_private.asc>

###Verify the imported key using this command

gpg --list-keys

Figure 40: Sample command to import PGP private key

Once a customer’s private key is imported, use the following command to decrypt your outbound data file:

gpg --decrypt <EncryptedFileName> > <DecryptedFileName>

Figure 41: Sample command to decrypt file

91 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Appendix 16: Large File Optimization (MTOM) Proxy Client Code Changes

The following example illustrates sample Java code changes for MTOM attachment:

92 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

//Example for uploadToFileUcm – similar process for importBulkData

/* Extend your code for MTOM and the <content> will be generated as follows:

<Content xmlns="http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/"

xmlns:xmime="http://www.w3.org/2005/05/xmlmime" xmime:contentType="application/octet-stream"<xop:Include

xmlns:xop="http://www.w3.org/2004/08/xop/include" href="cid:6098af03-52ff-4a40-9665-c89085ac2f3a"></Content>

*/

 private static BinaryElementPathInfo prepareAttachmentInfo(){

 Map<String, List<String>> xpaths= new HashMap<String, List<String>>();

 List<String> paths = new ArrayList<String>();

 paths.add("//typ:uploadFileToUcm/typ:Document/erp:Content");

 paths.add("//typ:uploadFileToUcm/typ:Document/erp:Content/xop:Include");

 xpaths.put("GenericRequest", paths);

 Map<String,String> prefixes = new HashMap<String, String>();

 prefixes.put("typ", TYP_NAMESPACE);

 prefixes.put("erp", ERP_NAMESPACE);

 prefixes.put("xop", XOP_NAMESPACE);

 BinaryElementPathInfo elemInfo = new BinaryElementPathInfo(xpaths,prefixes);

 return elemInfo;

 }

private static String ERP_NAMESPACE="http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/";

private static String XOP_NAMESPACE="http://www.w3.org/2004/08/xop/include";

 private static String TYP_NAMESPACE="http://xmlns.oracle.com/apps/financials/commonModules/shared/model/erpIntegrationService/types/";

public static void setupMtomAttachments(SOAPMessage requestMessage, BinaryElementPathInfo binaryElementPathInfo

) throws SOAPException {

if (requestMessage == null)

 return;

if (binaryElementPathInfo == null || binaryElementPathInfo.getXpathExpressions() == null ||

 binaryElementPathInfo.getXpathExpressions().isEmpty())

 return;

SOAPBody body = requestMessage.getSOAPBody();

93 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

List<Element> binElemList = getAllBinaryElements(body, binaryElementPathInfo);

if (binElemList == null)

 return;

for (Element theElm : binElemList) {

 final OracleSOAPElement theSOAPElem;

 if (theElm instanceof OracleSOAPElement)

 theSOAPElem = (OracleSOAPElement)theElm;

 else {

 WsMetaFactory jrfMetaFactory = WsMetaFactory.newInstance(ImplType.JRF);

 SOAPFactory fact = jrfMetaFactory.createSOAPFactory();

 theSOAPElem = (OracleSOAPElement)fact.createElement(theElm);

 theElm.getParentNode().replaceChild(theSOAPElem, theElm);

 }

 theSOAPElem.setDataHandler(new DataHandler(new DataSource() {

 public InputStream getInputStream() throws IOException {

 {

 java.io.InputStream is = new FileInputStream(new File("C:\\temp\\test.zip"));

 return is;

 }

 }

 public OutputStream getOutputStream() throws IOException {

 throw new IOException();

 }

 public String getContentType() {

 return "application/octet-stream";

 }

 public String getName() {

 return theSOAPElem.getLocalName();

 }

94 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

}));

 } //for every binary element

 requestMessage.setProperty(MessageImpl.PACKAGING_STYLE, MessageImpl.MTOM);

 requestMessage.setProperty(MessageImpl.ATTACHMENT_STYLE_PACKAGING,"true");

 requestMessage.setProperty(OracleSOAPMessage.MTOM_THRESHOLD, 1024);

 }

Figure 42: Sample code snippet to enable MTOM

95 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Appendix 17: Purge - UI Based Approach

In addition to the automated approach, interface and error data can also be purged through the Oracle ERP Cloud user

interface. These are the steps to execute the purge process through the user interface:

1. From the Oracle ERP Cloud home page, select Tools → Scheduled Processes from the Navigator.

2. Click Schedule New Process.

3. Search for and select the Purge Interface Tables process name.

4. Enter the data as defined in the table below.

Parameter
Name

Description Mandatory

Purge Process
Intent

There are three options:

1. File-based data import – Purge FBDI data.

2. Maintenance – Extend the number of days for the
auto purge process to extract data and upload to
UCM. The default setting is 30 days.

3. Other - Purge Non-FBDI data.

Yes

Import Process Select the applicable import process name. Yes

Load Request
ID

Enter the Load Request ID or enable an ID range. Yes

Extract Data Yes/No. The default value is No. If the value is Yes, the process
will extract all the data being selected for purge and upload the
data to UCM for future audit reference.

No

96 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Purge FBDI Object Data using a Single Load Request ID

Figure 43: Sample of a purge using a load request ID

Purge FBDI Object Data using a Range of Load Request IDs

Figure 44: Sample of a purge using a range of load request IDs

97 | USING EXTERNAL DATA INTEGRATION SERVICES FOR ORACLE ERP CLOUD

Purging Non-FBDI Data

Non-FBDI data can be purged by selecting the Purge Process Intent as Other and providing the Import Request ID.

Figure 45: Sample of purging non-FBDI data

Oracle Corporation, World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065, USA

Worldwide Inquiries Phone:

+1.833.386.META (6382)

Fax: +1.650.506.7200

Copyright © 2016, 2017, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and

the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or

fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are

formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means,

electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and

are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are

trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0817

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

